Functional Data Analysis Notes - 3: Functional PCA

本文深入探讨了主成分分析(PCA)及功能性主成分分析(fPCA)的基本原理和技术细节,包括多元PCA、平滑PCA等内容,并介绍了如何通过旋转等手段增强结果的可解释性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

阅读材料:Ramsay, J.O., Silverman, B.W. (2005) Functional Data Analysis (2nd Edition) Section 8.1-8.6, 9.1-9.4.

1 Multivariate Principal Components Analysis

The basic idea of Principal Components Analysis is to transform a group of potentially correlated variables into a group of linearly uncorrelated variables through orthogonal transformation, and this group of variables after conversion are called principal components.

PCA

1.1 A little analysis

  • Measure total variation in the data as total squared distance from center:
    ∑ j = 1 d ∑ i = 1 n ( x i j − x ˉ j ) 2 = t r a c e [ Σ ] ; \sum_{j=1}^d \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2 = trace[\Sigma]; j=1di=1n(xijxˉj)2=trace[Σ];
  • If x x x has covariance Σ \Sigma Σ, the variance of u T x u^Tx uTx is u T Σ u u^T \Sigma u uTΣu;
  • To maximize u T Σ u u^T \Sigma u uTΣu (or u T u u^Tu uTu) we solve the eigen-equation
    Σ u = λ u ; \Sigma u = \lambda u; Σu=λu;
  • For u T u = 1 u^Tu = 1 uTu=1, the closest multiple of u u u to x − x ˉ x-\bar{x} xxˉ is
    ( u T u ) − 1 ( u T x ) u = ( u T ( x − x ˉ ) ) u . (u^Tu)^{-1} (u^Tx)u = (u^T(x-\bar{x}))u. (uTu)1(uTx)u=(uT(xxˉ))u.

1.2 Mechanics of PCA

For an n × p n \times p n×p data matrix with n n n observations and p p p attributions:

  • Estimate the covariance matrix (using sample covariance matrix)
    Σ = 1 n − 1 ( X − X ˉ ) T ( X − X ˉ ) , \Sigma = \frac{1}{n-1} (X - \bar{X})^T(X - \bar{X}), Σ=n11(XXˉ)T(XXˉ),
    where X ˉ \bar{X} Xˉ is the mean vector of the p p p attributions of the data matrix X X X;
  • Take the eigen-decomposition of Σ \Sigma Σ
    Σ = U T D U = ∑ d i i u i u i T ; \Sigma = U^TDU = \sum d_{ii} u_i u_i^T; Σ=UTDU=diiuiuiT;
    • Columns of U U U are orthogonal; represent a new basis. Denoting the i i ith column of U U U by u i u_i ui;
    • D D D is a diagonal matrix. Its entries ( d i i d_{ii} dii) (eigenvalues) give variances of data along corresponding directions U U U.
  • Order D D D, U U U in terms of decreasing d i i d_{ii} dii;
  • ( X − X ˉ ) T u i (X - \bar{X})^T u_i (XXˉ)Tui is the i i ith principal component score.

2 Functional PCA

2.1 Re-interpretation

Instead of covariance matrix Σ \Sigma Σ, we have a surface σ ( s , t ) \sigma (s, t) σ(s,t).

Re-interpret eigen-decomposition:

Σ = U T D U = ∑ d i i u i u i T . \Sigma = U^TDU = \sum d_{ii} u_i u_i^T. Σ=UTDU=diiuiuiT.

For functions, this is the Karhunen-Loève decomposition:

σ ( s , t ) = ∑ i = 1 ∞ d i i ξ i ( s ) ξ i ( t ) , \sigma (s, t) = \sum_{i=1}^{\infty} d_{ii} \xi_i (s) \xi_i (t), σ(s,t)=i=1diiξi(s)ξi(t),

where

  • d i i d_{ii} dii represents amount of variation in direction ξ i ( t ) \xi_i (t) ξi(t);
  • ∫ ξ i ( t ) 2 d t = I . \int \xi_i (t)^2 dt = I. ξi(t)2dt=I. (??)

For the collection of curves x i ( t ) x_i (t) xi(t), i = 1 , . . . , n i = 1, ..., n i=1,...,n, we want to find the probe ξ 1 ( t ) \xi_1 (t) ξ1(t) that maximizes

V a r [ ∫ ξ 1 ( t ) x i ( t ) d t ] . Var \bigg[ \int \xi_1 (t) x_i (t) dt \bigg]. Var[ξ1(t)xi(t)dt].

But we need to constrain ∫ ξ 1 ( t ) 2 d t = 1 \int \xi_1 (t)^2 dt = 1 ξ1(t)2dt=1.

For ξ 2 ( t ) \xi_2 (t) ξ2(t) we want to maximize the variance subject to the orthogonality condition
∫ ξ 1 ( t ) ξ 2 ( t ) d t = 0 \int \xi_1 (t) \xi_2(t) dt = 0 ξ1(t)ξ2(t)dt=0

For ξ 1 , . . . , ξ d \xi_1, ..., \xi_d ξ1,...,ξd best approximation to x ( t ) x(t) x(t) is

x ^ ( t ) = x ˉ ( t ) + ( ∫ ( x ( t ) − x ˉ ( t ) ) ξ 1 ( t )   d t ) ξ 1 ( t ) + . . .       + ( ∫ ( x ( t ) − x ˉ ( t ) ) ξ d ( t )   d t ) ξ d ( t ) = f 1 ξ 1 ( t ) + . . . + f d ξ d ( t ) . \begin{aligned} \hat{x} (t) &= \bar{x} (t) + \bigg( \int \Big( x(t) - \bar{x} (t) \Big) \xi_1 (t) ~ dt \bigg) \xi_1 (t) + ... \\\\ &~~~~~ + \bigg( \int \Big( x(t) - \bar{x} (t) \Big) \xi_d (t) ~ dt \bigg) \xi_d (t) \\\\ &= f_1 \xi_1 (t) + ... + f_d \xi_d (t). \end{aligned} x^(t)=xˉ(t)+((x(t)xˉ(t))ξ1(t) dt)ξ1(t)+...     +((x(t)xˉ(t))ξd(t) dt)ξd(t)=f1ξ1(t)+...+fdξd(t).

which can be seen as a new basis!

For y ^ = g 1 ξ 1 ( t ) + . . . + g d ξ d ( t ) \hat{y} = g_1 \xi_1 (t) + ... + g_d \xi_d(t) y^=g1ξ1(t)+...+gdξd(t):

∫ ( x ^ ( t ) − y ^ ( t ) ) 2   d t = ∑ i = 1 d ( f i − g i ) 2 . \int \big( \hat{x}(t) - \hat{y} (t) \big)^2 ~ dt = \sum_{i=1}^d (f_i - g_i)^2. (x^(t)y^(t))2 dt=i=1d(figi)2.

The covariance surface can be decomposed:

σ ( s , t ) = ∑ i = 1 ∞ d i i ξ i ( s ) ξ i ( t ) \sigma (s, t) = \sum_{i=1}^\infty d_{ii} \xi_i (s) \xi_i (t) σ(s,t)=i=1diiξi(s)ξi(t)

with the ξ i \xi_i ξi orthonormal.

  • The ξ i ( t ) \xi_i (t) ξi(t) are the principal components; successively maximize V a r i [ ∫ ξ i ( t ) x j ( t )   d t ] Var_i \big[ \int \xi_i (t) x_j (t) ~ dt \big] Vari[ξi(t)xj(t) dt].
  • d i i = V a r i [ ∫ ξ i ( t ) x j ( t )   d t ] d_{ii} = Var_i \big[ \int \xi_i (t) x_j (t) ~ dt \big] dii=Vari[ξi(t)xj(t) dt].
  • d i i / ∑ d i i d_{ii} / \sum d_{ii} dii/dii is proportion of variance explained.
  • ξ 1 , . . . \xi_1, ... ξ1,... is a basis system specifically designed for the x i ( t ) x_i (t) xi(t).
  • Principal component scores are
    f i j = ∫ ξ i ( t ) [ x j ( t ) − x ˉ ( t ) ]   d t f_{ij} = \int \xi_i (t) [x_j(t) - \bar{x}(t)] ~ dt fij=ξi(t)[xj(t)xˉ(t)] dt
  • Reconstrction of x i ( t ) x_i (t) xi(t):
    x i ( t ) = x ˉ ( t ) + ∑ j = 1 ∞ f i j ξ j ( t ) x_i (t) = \bar{x} (t) + \sum_{j = 1}^{\infty} f_{ij} \xi_j (t) xi(t)=xˉ(t)+j=1fijξj(t)

2.2 Computing FPCA

Components solve the eigen-equation:

∫ σ ( s , t ) ξ i ( t )   d t = λ ξ i ( t ) \int \sigma (s, t) \xi_i (t) ~ dt = \lambda \xi_i (t) σ(s,t)ξi(t) dt=λξi(t)

Option 1:

  1. take a fine grid t = [ t 1 , . . . , t K ] \mathbf{t} = [t_1, ..., t_K] t=[t1,...,tK]
  2. find the eigen-decomposition of Σ ( t , t ) \Sigma (\mathbf{t}, \mathbf{t}) Σ(t,t)
  3. interpolate the eigenvectors

Option 2 (in fda library):

  1. if the x i ( t ) x_i(t) xi(t) have a common basis expansion, so must the eigen-functions;
  2. can re-express eigen-equation in terms of co-efficients;
  3. basis expansion will become apparent for smaller eigenvalues.

fpca1

fpca2

fpca3

fpca4

fpca5

2.3 Varimax rotations

A set of principal components defines a subspace. Within that space, we can try to find a more interpretable basis. That amounts to a rotation of the coordinate axes.

The basic idea is to try to find coordinate system where PC loadings are either very large or very small.

The varimax criterion is

m a x i m i z e ∑ V a r ( u i 2 ) . maximize \sum Var(u_i^2). maximizeVar(ui2).

2.4 Summary

  • PCA = means of summarizing high dimensional covariation;
  • fPCA = extension to infinite-dimensional covariation;
  • Representation terms of basis functions for fast(er) computation;
  • Varimax rotations = focus on particular regions; nice display properties.

3 Smoothed PCA

3.1 A general perspective of PCA

For observations x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn (vectors, functions, …), we want to find ξ 1 \xi_1 ξ1 so that

∑ ∥ x i − < x i , ξ 1 > ξ 1 ∥ \sum \| x_i - <x_i, \xi_1> \xi_1 \| xi<xi,ξ1>ξ1

is as small as possible.

< x i , ξ 1 > <x_i, \xi_1> <xi,ξ1> is the best multiplier of ξ 1 \xi_1 ξ1 to fit x i x_i xi.

Now we want ξ 2 \xi_2 ξ2 to be the next best such that < ξ 2 , ξ 1 > = 0 <\xi_2, \xi_1> = 0 <ξ2,ξ1>=0.

3.1.1 Inner product

Vectors are otrhogonal if they intersect at right angles.

x \mathbf{x} x and y \mathbf{y} y are orthogonal if x T y = 0 \mathbf{x}^T \mathbf{y} = 0 xTy=0 (i.e. ∑ x i y i = 0 \sum x_i y_i = 0 xiyi=0).

In order to deal with x ( t ) x(t) x(t) that are functions, multivariate functions, or mixed functions and scalars, we need a more general notation.

This will also help us understand smoothing a little more.

An inner produnct is a symmetric bilinear operator <., .> on a vector space F \mathcal{F} F taking values in R \mathbb{R} R:

  • < x , y > = < y , x > <x, y> = <y, x> <x,y>=<y,x>;
    (symmetry)
  • < a x , y > = a < x , y > <ax, y> = a <x, y> <ax,y>=a<x,y>;
  • < x + y , z > = < x , z > + < y , z > <x+y, z> = <x, z> + <y, z> <x+y,z>=<x,z>+<y,z>;
    (linearity for one element)
  • < x , x >   > 0 <x, x> ~ > 0 <x,x> >0 with x x x a non-zero vector.
    (positivity)

For example:

  • Euclidean space: < x , y > = x T y <x, y> = x^Ty <x,y>=xTy.
  • L 2 ( R ) \mathcal{L}^2 (\mathbb{R}) L2(R): ∫ x ( t ) y ( t )   d t \int x(t) y(t) ~ dt x(t)y(t) dt.

Associated notion of distance or size:

∥ x − y ∥ = < x − y , x − y > . \| x - y \| = < x - y, x - y>. xy=<xy,xy>.

So to get to x x x as close as possible in the direction y y y:

min ⁡ a < x − a y , x − a y > , \min_a <x - ay, x - ay>, amin<xay,xay>,

which is solved at

a = < x , y > / < y , y > . a = <x, y> / <y, y>. a=<x,y>/<y,y>.

If < y , y > = 1 <y, y> = 1 <y,y>=1, < x , y > <x, y> <x,y> is a measure of commonality.

If < y , z > = 0 <y, z> = 0 <y,z>=0 minimum of ∥ x − a y − b z ∥ \| x - ay - bz \| xaybz at

a = < x , y > ,   b = < x , z > . a = <x, y>, ~ b = <x, z>. a=<x,y>, b=<x,z>.

3.1.2 Inner produncts and PCA

For a collection x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn, seek a probe ξ \xi ξ to maximize

V a r [ < ξ , x i > ] . Var[<\xi, x_i>]. Var[<ξ,xi>].

Require < ξ i , ξ j > = δ i j <\xi_i, \xi_j> = \delta_{ij} <ξi,ξj>=δij.

Implies optimal reconstruction:

[ < x 1 , ξ 1 > ⋯ < x 1 , ξ d > ⋮ ⋮ < x n , ξ 1 > ⋯ < x n , ξ d > ] , \left[ \begin{matrix} <x_1, \xi_1> & \cdots & <x_1, \xi_d> \\ \vdots & & \vdots\\ <x_n, \xi_1> & \cdots & <x_n, \xi_d> \end{matrix} \right], <x1,ξ1><xn,ξ1><x1,ξd><xn,ξd>,

best summarization of x 1 , . . . , x n x_1, ..., x_n x1,...,xn with d d d numbers.

3.1.3 Defining new inner products

For a multivariate function x ( t ) = ( x 1 ( t ) , x 2 ( t ) ) \mathbf{x}(t) = \big( x_1(t), x_2(t) \big) x(t)=(x1(t),x2(t)).

A new inner product is

< ( x 1 , x 2 ) , ( y 1 , y 2 ) > = < x 1 , y 1 > + < x 2 , y 2 > , <(x_1, x_2), (y_1, y_2)> = <x_1, y_1> + <x_2, y_2>, <(x1,x2),(y1,y2)>=<x1,y1>+<x2,y2>,

which can be check that this is a bilinear form.

Note that

< ( x 1 ( t ) , x 2 ( t ) ) , ( y 1 ( t ) , y 2 ( t ) ) > = 0 <\big( x_1 (t), x_2 (t) \big), \big( y_1 (t), y_2 (t) \big) > = 0 <(x1(t),x2(t)),(y1(t),y2(t))>=0

does NOT imply

< x 1 , y 1 > = 0    a n d    < x 2 , y 2 > = 0 <x_1, y_1> = 0 ~~ and ~~ <x_2, y_2> = 0 <x1,y1>=0  and  <x2,y2>=0

3.1.4 fPCA with multivariate functions

If we have x i ( t ) x_i(t) xi(t) and y i ( t ) y_i(t) yi(t), i = 1 , . . . , n i = 1, ..., n i=1,...,n.

Then we want to find ( ξ x ( t ) , ξ y ( t ) ) \big( \xi_x (t), \xi_y (t) \big) (ξx(t),ξy(t)) to maximize

V a r [ ∫ ξ x ( t ) x i ( t )   d t + ∫ ξ y ( t ) y i ( t )   d t ] . Var \bigg[ \int \xi_x (t) x_i (t) ~ dt + \int \xi_y (t) y_i (t) ~ dt \bigg]. Var[ξx(t)xi(t) dt+ξy(t)yi(t) dt].

This is like putting x x x and y y y together end-to-end:

z ( t ) = { x ( t ) ,     t ≤ T y ( t ) ,     t > T    . z(t) = \begin{cases} x(t), ~~~ t \leq T \\ y(t), ~~~ t > T \end{cases}~~. z(t)={x(t),   tTy(t),   t>T  .

3.2 Smoothing and fPCA

When observed functions are rough, we may want the PCA to be smooth

  • reduces high-frequency variation in the x i ( t ) x_i(t) xi(t);
  • provides better reconstruction of future x i ( t ) x_i(t) xi(t).

We therefore want to find a way to impose smoothness on the principal components.

3.2.1 Including derivatives

Consider the multivariate function ( x ( t ) , L x ( t ) ) \big( x(t), Lx(t) \big) (x(t),Lx(t)), where L x ( t ) Lx(t) Lx(t) is the acceleration function (i.e. a function of D n x ( t ) D^n x(t) Dnx(t) ).

Inner product:

< x , y > = < ( x ( t ) , L x ( t ) ) , ( y ( t ) , L y ( t ) ) > = ∫ x ( t ) y ( t )   d t + λ ∫ L x ( t ) L y ( t ) n   d t . \begin{aligned} <x, y> &= < \big( x(t), Lx(t)), (y(t), Ly(t) \big) > \\\\ &= \int x(t) y(t) ~ dt + \lambda \int Lx(t) Ly(t)n ~ dt. \end{aligned} <x,y>=<(x(t),Lx(t)),(y(t),Ly(t))>=x(t)y(t) dt+λLx(t)Ly(t)n dt.

Smoothing:

  • think of y = ( y 1 ( t ) , y 2 ( t ) ) = ( y ( t ) , 0 ) \mathbf{y} = \big( y_1 (t), y_2 (t) \big) = \big( y(t), 0 \big) y=(y1(t),y2(t))=(y(t),0);
  • try to fit with x = ( x ( t ) , L x ( t ) ) \mathbf{x} = \big( x(t), Lx(t) \big) x=(x(t),Lx(t));
  • but the norm is defined by the Sobolev inner product above.

3.2.2 A new measure of size

Usually, we measure size in the L 2 L^2 L2 norm

∥ ξ ( t ) ∥ 2 2 = ∫ ξ ( t ) 2   d t . \| \xi (t) \|_2^2 = \int \xi (t)^2 ~ dt. ξ(t)22=ξ(t)2 dt.

But penalization methods implicitly use a *Sobolev norm:

∥ ξ ( t ) ∥ L 2 = ∫ ξ ( t ) 2   d t + λ ∫ [ L ξ ( t ) ] 2   d t . \| \xi(t) \|_L^2 = \int \xi (t)^2 ~ dt + \lambda \int [L \xi(t)]^2 ~ dt. ξ(t)L2=ξ(t)2 dt+λ[Lξ(t)]2 dt.

Search for the ξ \xi ξ that maximizes

V a r [ ∫ ξ ( t ) x i ( t )   d t ] ∥ ξ ( t ) ∥ L 2 = V a r [ ∫ ξ ( t ) x i ( t )   d t ] ∫ ξ ( t ) 2 d t + λ ∫ [ L ξ ( t ) ] 2 d t . \frac{Var \big[ \int \xi(t) x_i (t) ~ dt \big]}{\| \xi(t) \|_L^2} = \frac{Var \big[ \int \xi(t) x_i (t) ~ dt \big]}{\int \xi (t)^2 dt + \lambda \int \big[ L \xi (t) \big]^2dt}. ξ(t)L2Var[ξ(t)xi(t) dt]=ξ(t)2dt+λ[Lξ(t)]2dtVar[ξ(t)xi(t) dt].

3.2.3 Size and orthogonality

  • As λ \lambda λ increases, emphasize making L ξ ( t ) L \xi(t) Lξ(t) small over maximizing the variance.
  • Successive ξ i \xi_i ξi now satisfy
    ∫ ξ i ( t ) ξ j d t + λ ∫ L ξ i ( t ) L ξ j ( t ) d t = 0. \int \xi_i (t) \xi_j dt + \lambda \int L \xi_i (t) L \xi_j (t) dt = 0. ξi(t)ξjdt+λLξi(t)Lξj(t)dt=0.
  • Effectively “pretending” that L x i ( t ) = 0 Lx_i(t) = 0 Lxi(t)=0.
  • Coeffiicients of best (in least-squares sense) fit no longer ∫ ξ i ( t ) x j ( t ) d t \int \xi_i (t) x_j (t) dt ξi(t)xj(t)dt.
  • Best fit coefficents now also depend on which eigenfunctions are used.

3.3 Summary

  • Multivariate and Mixed PCs – like extending the vector;
  • Need to think about weighting;
  • Smoothing: may be done through a new inner product;
  • Cross Validation: objective way to work out if smoothing is doing anything useful for you;
  • Can use fPCA to help reconstruct partially-observed functions

4 Research papers

Liu, C., Ray, S., Hooker, G. and Friedl, M. (201), Functional principal component and factor analysis of spatially correlated data,
Statistics and Computing

Liu, C., Ray, S., Hooker, G. and Friedl, M. (2012), Functional factor analysis for periodic remote sensing data, The Annals of Applied Statistics 6(2), 601–624.

Paul, D. and Peng, J. (2011), Principal components analysis for sparsely observed correlated functional data using kernel smoothing method. Electronic Journal of Statistics (5).

Yao, F., Muller, H. and Wang, J. (2005), Functional data analysis for sparse longitudinal data, Journal of the American Statistical Association 100(470), 577–590.

1 Hahn-Banach Theorems and Introduction to Convex Conjugation 1 1.1 Hahn-Banach Theorem - Analytic Form . . . . . . . . . . . . . . 1 1.1.1 Theorems on Extension of Linear Functionals . . . . . . . 1 1.1.2 Applications of the Hahn-Banach Theorem . . . . . . . . 3 1.2 Hahn-Banach Theorems - Geometric Versions . . . . . . . . . . . 5 1.2.1 Definitions and Preliminaries . . . . . . . . . . . . . . . . 5 1.2.2 Separation of a Point and a Convex Set . . . . . . . . . . 6 1.2.3 Applications (Krein-Milman Theorem) . . . . . . . . . . . 8 1.3 Introduction to the Theory of Convex Conjugate Functions . . . 9 2 Baire Category Theorem and Its Applications 13 2.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Reminders on Banach Spaces . . . . . . . . . . . . . . . . 13 2.1.2 Bounded Linear Transformations . . . . . . . . . . . . . . 13 2.1.3 Duals and Double Duals . . . . . . . . . . . . . . . . . . . 15 2.2 The Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 16 2.3 The Uniform Boundedness Principle . . . . . . . . . . . . . . . . 17 2.4 The Open Mapping Theorem and Closed Graph Theorem . . . . 18 3 Weak Topology 21 3.1 General Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Frechet Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Weak Topology in Banach Spaces . . . . . . . . . . . . . . . . . . 24 3.4 Weak-* Topologies (X,X) . . . . . . . . . . . . . . . . . . . . 28 3.5 Reflexive Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.6 Separable Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.7.1 Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.7.2 PDE’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Bounded (Linear) Operators and Spectral Theory 37 4.1 Topologies on Bounded Operators . . . . . . . . . . . . . . . . . 37 4.2 Adjoint . . .
Scientists today collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drwan from growth analysis, meterology, biomechanics, equine science, economics, and medicine.The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields. Much of the material is based on the authors&#39; own work, some of which appears here for the first time.Jim Ramsay is Professor of Psychology at McGill University and is an international authority on many aspects of multivariate analysis. He draws on his collaboration with researchers in speech articulation, motor control, meteorology, psychology, and human physiology to illustrate his technical contributions to functional data analysis in a wide range of statistical and application journals.Bernard Silverman, author of the highly regarded "Density Estimation for Statistics and Data Analysis," and coauthor of "Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach," is Professor of Statistics at Bristol University. His published work on smoothing methods and other aspects of applied, computational, and theoretical statistics has been recognized by the Presidents&#39; Award of the Committee of Presidents of Statistical Societies, and the award of two Guy Medals by the Royal Statistical Society.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值