



1. LSTM
- 是对一个LSTM层的抽象,可以看成是由多个LSTM cell组成,是包含时间步的一个网络
2. LSTM cell
- 图2是LSTM在时间步上的结构,结合图3来理解LSTM cell的概念
- 在时间步上cell_1->cell_2->cell_3->…只是一个cell在不同时刻的表现
- 也就是说LSTM cell是某一时刻包含多个隐藏层神经元的结构
3. num_layers
-
模型层数(隐藏层)
-
LSTM隐藏层/循环层的层数。如图1的隐藏层1和隐藏层2所示
-
LSTM结构的个数,即多少个LSTM结构的堆叠。如图2的layer1和layer2所示
-
num_layers默认是1,可以设置1~10
-
整个LSTM网络就是: input -> LSTM结构 * n -> output
-
num_layers = hidden_num_layers
4. feature_size
- 输入x的特征数,number of features in the input x
- feature_size = input_size
5. input_size
- 输入维度,输入x的特征数
- input_size = feature_size
6. hidden_size
-
<