【TNT】Target-driveN Trajectory Prediction学习笔记

 

TNT Framework

前言

(文章的核心思想)

p ( s F ∣ χ ) = ∫ τ ∈ τ ( c P ) p ( τ ∣ χ ) p ( s F ∣ τ , χ ) d τ p(s_F|\chi)=\int_{\tau\in \tau(c_P)}^{} p(\tau|\chi)p(s_F|\tau,\chi)d\tau p(sFχ)=ττ(cP)p(τχ)p(sFτ,χ)dτ

  • 其中, χ = ( s P , c P ) \chi = (s_P, c_P) χ=(sP,cP) s P s_P sP是单个目标的观察状态序列, c P c_P cP是与其他代理和场景元素组成的环境交互, s F s_F sF是未来时间步的状态序列
  • 我们想捕获的是整体概率分布 p ( s F ∣ χ ) p(s_F|\chi) p(sFχ)
  • τ \tau τ是目标空间, p ( τ ∣ χ ) p(\tau | \chi) p(τχ)p(t|x)是目标分布可以很好的捕获意图的不确定性
  • 文章使用一组离散的位置来近似目标空间, 将目标分布p(t|x)的估计转换为分类任务,有更好的解释性,在考虑目标空间t的时候也引入了专家知识即道路拓扑结构

文章分为三个阶段进行:

  • 1阶段: 确定目标空间 τ \tau τ的信息。即目标预测, 根据观察到的 χ \chi χ, 用一组离散目标状态来模拟意图的不确定性, 然后输出目标分布 p ( τ ∣ χ ) p(\tau | \chi) p(τχ), 也就是anchor打分
  • 2阶段: 以目标为条件的运动估计。有了选定的目标空间, 即top离散点, 对从初始状态到未来可能运动状态进行单模态建模, 即输出公式(1)的结果
    3阶段: 适应下游任务。需要给出一小部分有代表性的未来预测, 而不是所有可能未来的完整分布, 什么都预测相当于没预测。所以3阶段就是学习评分函数对结果进行评分选择

pipeline的三个阶段

  • target prediction: 给所有anchor点打分, 选出top的anchor点
  • target-conditioned motion estimation: 就选出的anchor点回归出完整轨迹
  • trajectory scoring & selection: 就2阶段得到的几条轨迹, 考虑其他预测轨迹的同时估计轨迹的概率

(1阶段)

  • 1阶段最重要, 可有不同的撒点策略
  • 撒点策略需要有适当的分辨率, 对全部可行驶区域都要有很好的覆盖。只要goal选定, 对下游就很有帮助
  • 文章中提到的撒点策略:
    • (1) 根据地图信息撒点
    • (2) grid网格化撒点
  • 1阶段在给goal打分的同时还会回归出两个offset,goal+offset才是2阶段用到的endpoint

(2阶段)

  • 轨迹拟合难度不高, 需要符合运动学和动力学约束

(3阶段)

  • 对整条轨迹进行打分, 打分策略见下一章节

(网络框架)

在这里插入图片描述

1. 场景上下文编码
  • 场景上下文编码是轨迹预测的第一步, 以捕获agent-agent和agent-road交互
  • 如果场景上下文仅自上而下的图像可用, 采用ConvNet作为上下文编码器
  • 如果高精地图可用, 采用先进的VectorNet作为上下文编码器
    • polyline作为高精地图元素 c P c_P cP和智能体轨迹 s P s_P sP的抽象
    • 采用子图网络(MLP+GNN)对每条折线进行编码, 使用全局图(注意力机制的GNN)来模拟折线之间的交互关系
    • 输出每个agent的全局上下文特征x(MLP作为decoder)
2. 目标预测
  • 通过一组N个离散的, 具有连续偏移量的量化位置来模拟潜在未来目标
    τ = { τ n } = { ( x n , y n ) + ( △ x n , △ y n ) } n = 1 N \tau = \left \{ \tau^n \right \} =\left \{ (x^n,y^n)+(\bigtriangleup x^n, \bigtriangleup y^n) \right \} _{n=1}^{N} τ={ τn}={ (xn,yn)+(xn,yn)}n=1N

    • 小写 τ \tau τ被定义为agent在固定时间范围T(预测时长)内可能出现的位置 ( x , y ) (x,y) (x,y),然后通过离散连续分解, 对目标分布进行建模 p ( τ n ∣ χ ) = π ( τ n ∣ χ ) ⋅ N ( △ x n ∣ v x n ( χ ) ) ⋅ N ( △ y n ∣ v y n ( χ ) ) p(\tau^n|\chi)=\pi(\tau^n | \chi)\cdot N(\bigtriangleup x^{n}|v_{x}^{n}(\chi) )\cdot N(\bigtriangleup y^{n}|v_{y}^{n}(\chi) ) p(τnχ)=π(τnχ)N(xnvxn(χ))N(ynvyn(χ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值