轨迹预测论文阅读

总结

  • goal-based methods
    首先预测每个 agent 的 endpoint, 然后预测完整的轨迹

2018

Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks

2019

Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks

PRECOG: PREdiction Conditioned On Goals in Visual Multi-Agent Settings

Rules of the Road: Predicting Driving Behavior with a Convolutional Model of Semantic Interactions

Multi-Head Attention for Multi-Modal Joint Vehicle Motion Forecasting

2020

Learning Lane Graph Representations for Motion Forecasting

Implicit Latent Variable Model for Scene-Consistent Motion Forecasting

TNT: Target-driveN Trajectory Prediction

VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation

MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction

CoverNet: Multimodal Behavior Prediction using Trajectory Sets

Trajectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data

The Importance of Prior Knowledge in Precise Multimodal Prediction

2021

LaneRCNN: Distributed Representations for Graph-Centric Motion Forecasting

Multimodal Trajectory Prediction Conditioned on Lane-Graph Traversals

Goal-driven Long-Term Trajectory Prediction

DenseTNT: Waymo Open Dataset Motion Prediction Challenge 1st Place Solution [√]

Scene Transformer: A unified multi-task model for behavior prediction and planning

  • 2
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值