诱导公式的本质【转载】

利用单位圆定义了三角比,而单位圆又具有很好的对称性,这些对称的性质产生了诱导公式。诱导公式可以不用记忆,用的时候直接画单位圆观察对称性即可。比如:

  • 角π+α的终边与角α的终边关于原点中心对称
    在这里插入图片描述
  • 角π-α的终边与角α的终边关于y轴对称
    在这里插入图片描述
  • 角-α的终边与角α的终边关于x轴对称
    在这里插入图片描述
  • 角π/2-α的终边与角α的终边关于直线y=x对称
    在这里插入图片描述

注意:此图有误,π/2-α的终边的坐标应为(y,x)

  • 角π/2+α的终边三角形与角α的终边三角形全等
    在这里插入图片描述
    关于口诀“奇变偶不变,符号看象限
  • 奇变偶不变,主要针对 K π 2 ± α \frac{K\pi}{2}\pm \alpha 2Kπ±α α \alpha α之间的关系,这里必须把 α \alpha α看作锐角,当 K K K为奇数是发生改变,偶数则不发生改变。符号看 K π 2 ± α \frac{K\pi}{2}\pm \alpha 2Kπ±α所位于的坐标象限。

以上内容来自:

三角函数的诱导公式是一系列用于简化含有特定角度的三角函数计算的等式。这些公式能够帮助转换不同象限内的角对应的正弦、余弦和正切值,使得解题更加简便。 以下是常用的三角函数诱导公式列表: 1. 角度$\alpha$与其相反数$-\alpha$之间的关系: - $\sin(-\alpha) = -\sin(\alpha)$ - $\cos(-\alpha) = \cos(\alpha)$ - $\tan(-\alpha) = -\tan(\alpha)$ 2. 角度$\alpha$与$\pi + \alpha$之间的关系: - $\sin(\pi + \alpha) = -\sin(\alpha)$ - $\cos(\pi + \alpha) = -\cos(\alpha)$ - $\tan(\pi + \alpha) = \tan(\alpha)$ 3. 角度$\alpha$与$\frac{\pi}{2} - \alpha$(共轭角)之间的关系: - $\sin(\frac{\pi}{2} - \alpha) = \cos(\alpha)$ - $\cos(\frac{\pi}{2} - \alpha) = \sin(\alpha)$ - $\tan(\frac{\pi}{2} - \alpha) = \cot(\alpha)$ 4. 角度$\alpha$与$\frac{\pi}{2} + \alpha$之间的关系: - $\sin(\frac{\pi}{2} + \alpha) = \cos(\alpha)$ - $\cos(\frac{\pi}{2} + \alpha) = -\sin(\alpha)$ - $\tan(\frac{\pi}{2} + \alpha) = -\cot(\alpha)$ 5. 角度$\alpha$与$\pi - \alpha$之间的关系: - $\sin(\pi - \alpha) = \sin(\alpha)$ - $\cos(\pi - \alpha) = -\cos(\alpha)$ - $\tan(\pi - \alpha) = -\tan(\alpha)$ 6. 角度$\alpha$与$2\pi + \alpha$之间的关系(周期性质): - $\sin(2\pi + \alpha) = \sin(\alpha)$ - $\cos(2\pi + \alpha) = \cos(\alpha)$ - $\tan(2\pi + \alpha) = \tan(\alpha)$ 以上公式适用于任何实数值的角度$\alpha$。当涉及到具体的题目时,可以根据需要选择合适的诱导公式来解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值