利用单位圆定义了三角比,而单位圆又具有很好的对称性,这些对称的性质产生了诱导公式。诱导公式可以不用记忆,用的时候直接画单位圆观察对称性即可。比如:
- 角π+α的终边与角α的终边关于原点中心对称
- 角π-α的终边与角α的终边关于y轴对称
- 角-α的终边与角α的终边关于x轴对称
- 角π/2-α的终边与角α的终边关于直线y=x对称
注意:此图有误,π/2-α的终边的坐标应为(y,x)
- 角π/2+α的终边三角形与角α的终边三角形全等
关于口诀“奇变偶不变,符号看象限 - 奇变偶不变,主要针对 K π 2 ± α \frac{K\pi}{2}\pm \alpha 2Kπ±α与 α \alpha α之间的关系,这里必须把 α \alpha α看作锐角,当 K K K为奇数是发生改变,偶数则不发生改变。符号看 K π 2 ± α \frac{K\pi}{2}\pm \alpha 2Kπ±α所位于的坐标象限。
以上内容来自: