那些忽略的问题,矩阵可以是任意阶数、维度吗?——“秩”

——未曾考虑的问题,矩阵行列数可以是不等的吗

在围绕着线性代数中的“矩阵”进行了一系列的探究和思考后,我们终于可以暂停以下,因为我们好像也不知从何处接着说了。回过头来,有一个问题值得我们回味和再一次思考:每次探讨矩阵问题时,我们总是以二维双向量矩阵为例,并假设矩阵的各种运算都是合法的。我们也尝试过 3 * 3 的矩阵,理论上也可以进一步推广到 n * n,但是并未尝试过 n * m 的矩阵,那么是否 n * m 的矩阵也算是矩阵呢? n * m 的矩阵又是否可以进行各种运算?或者又代表了什么含义呢?

还是以简单的二维矩阵为例,假设有这么一个矩阵A:\begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix},这个矩阵到底是什么含义呢?

——矩阵的另一层含义解读-量程与量纲

从量纲的角度上讲,它就是单位阵,也是平面坐标系上的一组基(只是它刚好是标准正交基)。正交因为垂直,标准因为什么?

从量程的角度上讲,它本来应该是这个含义:\begin{bmatrix} 1i & 0j\\ 0i & 1j \end{bmatrix},i,j是基向量。矩阵中的[1 , 0]向量代表是 1*i 和 0*j 的向量和。矩阵中的[0 , 1]向量代表的是 0*i 和 1*j的向量和。

就好比,1微米它既可以作为量纲表示为长度的单位,也可以作为量程代表 1000纳米,当然这是在一维的角度上,所以显得过于简单,但道理是一样的。2微米是量程,同样可以是量纲,我说这个头发有3 个2微米当然也是可以的,因此我们可以有这么一个认知:矩阵本身既是量程,也是量纲。这应该也是矩阵乘法中矩阵既可以作为变换本身(对于右矩阵),又可以作为基变换(左矩阵)的内在机理。

——尝试升维量纲

当我们想到上面的认知后,我们尝试看一下这个矩阵:B: \begin{bmatrix} 1&0 \\ 0&1 \\ 2&1 \end{bmatrix},当我们把它当作量程时,它代表的是三个向量:L:(1i,0j), M:(0i, 1j), N:(2i, 1j),我们可以轻松画出这三个向量。

此时若是我们讲B作为量纲,那么代表着什么含义呢?我们以矩阵B的行向量L,M,N作为量纲,写个量程:(2,3,0)。很明显,其计算方式就是 2L = 2(1i,0j), 3M = 3(0i, 1j), 0N = 0(2i, 1j),在坐标系上坐标就是:(2i + 0i + 0i, 0j + 3j + 0j) = (2i, 3j)。因为量纲L、M本身单位就是1,而N的量程为0,故其与二维(2,3)在位置上是一致的。

若我们给量纲N也加上非0的量程,如量程:(1,3,1),同样我们可以计算出其在i,j上的坐标为:1L = 1(1i,0j), 3M = 3(0i, 1j), 1N = 1(2i, 1j),在坐标系上坐标就是:(1i + 0i + 2i, 0j + 3j + 1j) = (3i, 4j)。

在上述计算中,我们也发现了量程的“维度”与量纲的“数量”是对应的,这也侧面反映了矩阵方法左列=右行的要求。(当然,在不标准的的场景下,我觉得并没有这个要求。当0也是一个道理)上面我们已经了解了量纲,量程的概念,现在我们可以初步认为矩阵的行数就是量纲的维度(以行向量为准)。我们再尝试画几个在矩阵B的量纲下的点:(4, 3, 0), (4, 5, 0), (7, 3, 0), (7, 5, 0), (4, 3, 1), (4, 5, 1), (7, 3, 1), (7, 5, 1)。计算出坐标:

哈哈,我们画出了一个立方体! 看到这个立方体,突然明白了一件事情:逻辑上的3维(3个组合量纲)可以在2维空间(实际还是两个量纲)上体现物理上3维(3个不同量纲的量程)的物体。反过来说,物理上的三维信息(3个量程)可以映射到二维空间(实际还是两个量纲)上。而各类3维场景的平面应用,如3D游戏、VR等,其基础就是要先将物理三维用逻辑三维替代——建立立体空间坐标系。

不知觉中,又说了一大堆不知是否是废话。本来也不是想说那么多的,只是在思考的过程中仿佛又有了一些领悟 ,也希望能给大家一些帮助。

上面的一番思考后,其实已经可以在几何上对“秩”下一个结论了。逻辑量纲 数,即逻辑维度的数量。但是在我们完成3维立体坐标系的设计时,已经发现了一个明显的问题:第三个向量N其实就是L与M的组合而来的,因此在M向量上的量程,才能由L、M组成的平面坐标系表示。这里L、M也就是所谓的极大线性无关组。L与N,M与N同样也是。——而这个极大线性无关组,代表的则是物理上的可表达维度。假设向量O坐标为:[1i,2j,3k],即使它本身是由空间上3个基组成,但其本身作为量纲仍只能表示一条直线,故其可表示的物理维度仍然为一条直线,秩还是1。尝试去对多个类型的矩阵进行乘法运算,可以看出:左矩阵作为量程(行数是逻辑维度),可以决定结果逻辑维度。右矩阵作为量纲(列数,基i、j、k等),可以决定物理维度。而其极大线性无关组,表达了矩阵最终能表达的物理维度-秩。

——矩阵秩的变化,逻辑升维降维与物理升维降维

// TODO 进一步分析逻辑维度与物理维度的转换以及内在含义

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值