文章目录
一、真分式和假分式
设
P
n
(
x
)
P_n(x)
Pn(x)和
Q
m
(
x
)
Q_m(x)
Qm(x)表示
n
n
n次和
m
m
m次的多项式函数,则
{
P
n
(
x
)
Q
m
(
x
)
为假分式
,
n
≥
m
P
n
(
x
)
Q
m
(
x
)
为真分式
,
n
<
m
\begin{cases} \frac{P_n(x)}{Q_m(x)}为假分式, & n \geq m \\ \frac{P_n(x)}{Q_m(x)}为真分式, & n < m \end{cases}
{Qm(x)Pn(x)为假分式,Qm(x)Pn(x)为真分式,n≥mn<m
假分式可使用长除法分解,此处不再赘述。
二、有理真分式的分解形式
有理真分式
P
n
(
x
)
Q
m
(
x
)
\frac{P_n(x)}{Q_m(x)}
Qm(x)Pn(x)可分解成如下四种形式:
A
x
−
a
,
A
(
x
−
a
)
l
,
M
x
+
N
x
2
+
p
x
+
q
,
M
x
+
N
(
x
2
+
p
x
+
q
)
l
\frac{A}{x-a},\frac{A}{(x-a)^l},\frac{Mx+N}{x^2+px+q},\frac{Mx+N}{(x^2+px+q)^l}
x−aA,(x−a)lA,x2+px+qMx+N,(x2+px+q)lMx+N
两类常见的分式均可以被唯一分解为:
(
1
)
P
(
x
)
(
x
−
a
)
k
=
A
1
x
−
a
+
A
2
(
x
−
a
)
2
+
.
.
.
+
A
k
(
x
−
a
)
k
(
2
)
P
(
x
)
(
x
2
+
p
x
+
q
)
k
=
M
1
x
+
N
1
x
2
+
p
x
+
q
+
M
2
x
+
N
2
(
x
2
+
p
x
+
q
)
2
+
.
.
.
+
M
k
x
+
N
k
(
x
2
+
p
x
+
q
)
k
\begin{aligned} (1)&\frac{P(x)}{(x-a)^k} = \frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} +...+ \frac{A_k}{(x-a)^k} \\ (2)&\frac{P(x)}{(x^2+px+q)^k} = \frac{M_1x+N_1}{x^2+px+q} + \frac{M_2x+N_2}{(x^2+px+q)^2}+...+ \frac{M_kx+N_k}{(x^2+px+q)^k} \end{aligned}
(1)(2)(x−a)kP(x)=x−aA1+(x−a)2A2+...+(x−a)kAk(x2+px+q)kP(x)=x2+px+qM1x+N1+(x2+px+q)2M2x+N2+...+(x2+px+q)kMkx+Nk
注意, x 2 + p x + q x^2+px+q x2+px+q不能在实数域内进行因式分解。
三、留数法求解待定系数
对于第一类分式,可以采用留数法求解待定系数。留数法又可以分为两种情形:一种是分母 Q m ( x ) Q_m(x) Qm(x)分解为只有单根的形式,比如 ( x − a ) ( x − b ) ( x − c ) (x-a)(x-b)(x-c) (x−a)(x−b)(x−c);另一种是是分母 Q m ( x ) Q_m(x) Qm(x)可分解为存在重根的形式,比如 ( x − a ) 2 ( x − b ) ( x − c ) (x-a)^2(x-b)(x-c) (x−a)2(x−b)(x−c)。
1. 分母 Q m ( x ) Q_m(x) Qm(x)因式分解后只有单根的情况
(1)若分母
Q
m
(
x
)
Q_m(x)
Qm(x)可分解为
Q
m
(
x
)
=
(
x
−
b
1
)
(
x
−
b
2
)
⋅
⋅
⋅
(
x
−
b
m
)
Q_m(x)=(x-b_1)(x-b_2)···(x-b_m)
Qm(x)=(x−b1)(x−b2)⋅⋅⋅(x−bm)
则有理真分式可分解为
P
n
(
x
)
Q
m
(
x
)
=
A
1
x
−
b
1
+
A
2
x
−
b
2
+
.
.
.
+
A
m
x
−
b
m
\frac{P_n(x)}{Q_m(x)}=\frac{A_1}{x-b_1}+\frac{A_2}{x-b_2}+...+\frac{A_m}{x-b_m}
Qm(x)Pn(x)=x−b1A1+x−b2A2+...+x−bmAm
此时系数为
A
k
=
[
P
n
(
x
)
Q
m
(
x
)
⋅
(
x
−
b
k
)
]
∣
x
=
b
k
,
k
∈
[
1
,
m
]
A_k=\left[ \frac{P_n(x)}{Q_m(x)} \cdot (x-b_k) \right] \bigg|_{x=b_k},k\in[1,m]
Ak=[Qm(x)Pn(x)⋅(x−bk)]
x=bk,k∈[1,m]
(2)若分母
Q
m
(
x
)
Q_m(x)
Qm(x)可分解为
Q
m
(
x
)
=
(
a
1
x
−
b
1
)
(
a
2
x
−
b
2
)
⋅
⋅
⋅
(
a
m
x
−
b
m
)
Q_m(x)=(a_1x-b_1)(a_2x-b_2)···(a_mx-b_m)
Qm(x)=(a1x−b1)(a2x−b2)⋅⋅⋅(amx−bm)
则上述结论不再适用。应先把
Q
m
(
x
)
Q_m(x)
Qm(x)的每一个因式中
x
x
x的系数化为
1
1
1,才能继续使用结论。将分母
Q
m
(
x
)
Q_m(x)
Qm(x)整理成
Q
m
(
x
)
=
a
1
(
x
−
b
1
a
1
)
⋅
a
2
(
x
−
b
2
a
2
)
⋅
⋅
⋅
a
m
(
x
−
b
m
a
m
)
Q_m(x)=a_1(x-\frac{b_1}{a_1}) \cdot a_2(x-\frac{b_2}{a_2})···a_m(x-\frac{b_m}{a_m})
Qm(x)=a1(x−a1b1)⋅a2(x−a2b2)⋅⋅⋅am(x−ambm)
令
P
n
′
(
x
)
=
P
n
(
x
)
a
1
a
2
⋅
⋅
⋅
a
m
Q
m
′
(
x
)
=
(
x
−
b
1
a
1
)
(
x
−
b
2
a
2
)
⋅
⋅
⋅
(
x
−
b
m
a
m
)
\begin{aligned} P_n^{'}(x)&=\frac{P_n(x)}{a_1a_2···a_m}\\ Q_m^{'}(x)&=(x-\frac{b_1}{a_1})(x-\frac{b_2}{a_2})···(x-\frac{b_m}{a_m}) \end{aligned}
Pn′(x)Qm′(x)=a1a2⋅⋅⋅amPn(x)=(x−a1b1)(x−a2b2)⋅⋅⋅(x−ambm)
则有理真分式可分解为
P
n
(
x
)
Q
m
(
x
)
=
P
n
′
(
x
)
Q
m
′
(
x
)
=
A
1
x
−
b
1
a
1
+
A
2
x
−
b
2
a
2
+
.
.
.
+
A
m
x
−
b
m
a
m
\begin{aligned} \frac{P_n(x)}{Q_m(x)}= \frac{P_n^{'}(x)}{Q_m^{'}(x)}=\frac{A_1}{x-\frac{b_1}{a_1}}+\frac{A_2}{x-\frac{b_2}{a_2}}+...+\frac{A_m}{x-\frac{b_m}{a_m}} \end{aligned}
Qm(x)Pn(x)=Qm′(x)Pn′(x)=x−a1b1A1+x−a2b2A2+...+x−ambmAm
对
P
n
′
(
x
)
Q
m
′
(
x
)
\frac{P_n^{'}(x)}{Q_m^{'}(x)}
Qm′(x)Pn′(x)使用留数法,此时系数为
A
k
=
[
P
n
′
(
x
)
Q
m
′
(
x
)
⋅
(
x
−
b
k
a
k
)
]
∣
x
=
b
k
a
k
,
k
∈
[
1
,
m
]
A_k=\left[ \frac{P_n^{'}(x)}{Q_m^{'}(x)} \cdot (x-\frac{b_k}{a_k}) \right] \bigg|_{x=\frac{b_k}{a_k}},k\in[1,m]
Ak=[Qm′(x)Pn′(x)⋅(x−akbk)]
x=akbk,k∈[1,m]
2. 分母 Q m ( x ) Q_m(x) Qm(x)因式分解后存在重根的情况
(1)若分母
Q
m
(
x
)
Q_m(x)
Qm(x)可分解为
Q
m
(
x
)
=
(
x
−
b
)
m
Q_m(x)=(x-b)^m
Qm(x)=(x−b)m
则有理真分式可分解为
P
n
(
x
)
Q
m
(
x
)
=
A
1
x
−
b
+
A
2
(
x
−
b
)
2
+
.
.
.
+
A
m
(
x
−
b
)
m
\frac{P_n(x)}{Q_m(x)}=\frac{A_1}{x-b}+\frac{A_2}{(x-b)^2}+...+\frac{A_m}{(x-b)^m}
Qm(x)Pn(x)=x−bA1+(x−b)2A2+...+(x−b)mAm
此时系数为
A
m
=
[
P
n
(
x
)
Q
m
(
x
)
⋅
(
x
−
b
)
m
]
∣
x
=
b
m
A
k
=
1
(
m
−
k
)
!
⋅
d
m
−
k
d
x
m
−
k
[
P
n
(
x
)
Q
m
(
x
)
⋅
(
x
−
b
)
m
]
∣
x
=
b
k
,
k
∈
[
1
,
m
−
1
]
\begin{aligned} A_m&=\left[ \frac{P_n(x)}{Q_m(x)} \cdot (x-b)^m \right] \bigg|_{x=b_m} \\ A_k&=\frac{1}{(m-k)!} \cdot \frac{\mathrm{d}^{m-k}}{\mathrm{d}x^{m-k}} \left[ \frac{P_n(x)}{Q_m(x)} \cdot (x-b)^m \right] \bigg|_{x=b_k},k\in[1,m-1] \end{aligned}
AmAk=[Qm(x)Pn(x)⋅(x−b)m]
x=bm=(m−k)!1⋅dxm−kdm−k[Qm(x)Pn(x)⋅(x−b)m]
x=bk,k∈[1,m−1]
(2)若分母
Q
m
(
x
)
Q_m(x)
Qm(x)可分解为
Q
m
(
x
)
=
(
a
x
−
b
)
m
Q_m(x)=(ax-b)^m
Qm(x)=(ax−b)m
则上述结论不再适用。应先把
Q
m
(
x
)
Q_m(x)
Qm(x)的因式中
x
x
x的系数化为
1
1
1,才能继续使用结论。将分母
Q
m
(
x
)
Q_m(x)
Qm(x)整理成
Q
m
(
x
)
=
a
m
⋅
(
x
−
b
a
)
m
Q_m(x)=a^m \cdot (x-\frac{b}{a})^m \\
Qm(x)=am⋅(x−ab)m
令
P
n
′
(
x
)
=
P
n
(
x
)
a
m
Q
m
′
(
x
)
=
(
x
−
b
a
)
m
\begin{aligned} P_n^{'}(x)&=\frac{P_n(x)}{a^m} \\ Q_m^{'}(x)&=(x-\frac{b}{a})^m \end{aligned}
Pn′(x)Qm′(x)=amPn(x)=(x−ab)m
将有理真分式化为
P
n
(
x
)
Q
m
(
x
)
=
P
n
′
(
x
)
Q
m
′
(
x
)
=
A
1
x
−
b
a
+
A
2
(
x
−
b
a
)
2
+
.
.
.
+
A
m
(
x
−
b
a
)
m
\begin{aligned} \frac{P_n(x)}{Q_m(x)}=\frac{P_n^{'}(x)}{Q_m^{'}(x)}=\frac{A_1}{x-\frac{b}{a}}+\frac{A_2}{(x-\frac{b}{a})^2}+...+\frac{A_m}{(x-\frac{b}{a})^m} \end{aligned}
Qm(x)Pn(x)=Qm′(x)Pn′(x)=x−abA1+(x−ab)2A2+...+(x−ab)mAm
对
P
n
′
(
x
)
Q
m
′
(
x
)
\frac{P_n^{'}(x)}{Q_m^{'}(x)}
Qm′(x)Pn′(x)使用留数法,此时系数为
A
m
=
[
P
n
′
(
x
)
Q
m
′
(
x
)
⋅
(
x
−
b
a
)
m
]
∣
x
=
b
a
A
k
=
1
(
m
−
k
)
!
⋅
d
m
−
k
d
x
m
−
k
[
P
n
′
(
x
)
Q
m
′
(
x
)
⋅
(
x
−
b
a
)
m
]
∣
x
=
b
a
,
k
∈
[
1
,
m
−
1
]
\begin{aligned} A_m&=\left[ \frac{P_n^{'}(x)}{Q_m^{'}(x)} \cdot \left(x-\frac{b}{a}\right)^m \right] \bigg|_{x=\frac{b}{a}} \\ A_k&=\frac{1}{(m-k)!} \cdot \frac{\mathrm{d}^{m-k}}{\mathrm{d}x^{m-k}} \left[ \frac{P_n^{'}(x)}{Q_m^{'}(x)} \cdot \left(x-\frac{b}{a}\right)^m \right] \bigg|_{x=\frac{b}{a}},k\in[1,m-1] \end{aligned}
AmAk=[Qm′(x)Pn′(x)⋅(x−ab)m]
x=ab=(m−k)!1⋅dxm−kdm−k[Qm′(x)Pn′(x)⋅(x−ab)m]
x=ab,k∈[1,m−1]
3. 分母 Q m ( x ) Q_m(x) Qm(x)因式分解后存在复根的情况
分母不可再分解的分式,形如
M
1
x
+
N
1
x
2
+
p
x
+
q
\frac{M_1x+N_1}{x^2+px+q}
x2+px+qM1x+N1
其分母无实数根,只有复数根。我们也可使用留数法解决复根情况,将复数根代入计算,但是计算较为繁琐。不过有一种很巧妙的方法(见有理函数积分计算法则——留数思想法)可大大降低运算量,见例 5 及之后例题。
四、相关例题
【例 1】分解以下分式
f
(
x
)
=
10
(
x
+
2
)
(
x
+
5
)
x
(
x
+
1
)
(
x
+
3
)
f(x)=\frac{10(x+2)(x+5)}{x(x+1)(x+3)}
f(x)=x(x+1)(x+3)10(x+2)(x+5)
【解】将分式分解为
f
(
x
)
=
A
1
x
+
A
2
x
+
1
+
A
3
x
+
3
f(x)=\frac{A_1}{x}+\frac{A_2}{x+1}+\frac{A_3}{x+3}
f(x)=xA1+x+1A2+x+3A3
用留数法求出各项系数
A
1
=
[
10
(
x
+
2
)
(
x
+
5
)
x
(
x
+
1
)
(
x
+
3
)
⋅
x
]
∣
x
=
0
=
100
3
A
2
=
[
10
(
x
+
2
)
(
x
+
5
)
x
(
x
+
1
)
(
x
+
3
)
⋅
(
x
+
1
)
]
∣
x
=
−
1
=
−
20
A
3
=
[
10
(
x
+
2
)
(
x
+
5
)
x
(
x
+
1
)
(
x
+
3
)
⋅
(
x
+
3
)
]
∣
x
=
−
3
=
−
10
3
\begin{aligned} A_1&=\left[ \frac{10(x+2)(x+5)}{x(x+1)(x+3)} \cdot x \right] \bigg|_{x=0}=\frac{100}{3} \\ A_2&=\left[ \frac{10(x+2)(x+5)}{x(x+1)(x+3)} \cdot (x+1) \right] \bigg|_{x=-1}=-20 \\ A_3&=\left[ \frac{10(x+2)(x+5)}{x(x+1)(x+3)} \cdot (x+3) \right] \bigg|_{x=-3}=-\frac{10}{3} \end{aligned}
A1A2A3=[x(x+1)(x+3)10(x+2)(x+5)⋅x]
x=0=3100=[x(x+1)(x+3)10(x+2)(x+5)⋅(x+1)]
x=−1=−20=[x(x+1)(x+3)10(x+2)(x+5)⋅(x+3)]
x=−3=−310
所以结果为
f
(
x
)
=
100
3
x
+
−
20
x
+
1
−
10
3
x
+
3
f(x)=\frac{\frac{100}{3}}{x}+\frac{-20}{x+1}-\frac{\frac{10}{3}}{x+3}
f(x)=x3100+x+1−20−x+3310
【例 2】分解以下分式
f
(
x
)
=
x
−
2
x
(
x
+
1
)
3
f(x)=\frac{x-2}{x(x+1)^3}
f(x)=x(x+1)3x−2
【解】将分式分解为
f
(
x
)
=
A
1
x
+
A
2
(
x
+
1
)
3
+
A
3
(
x
+
1
)
2
+
A
4
x
+
1
f(x)=\frac{A_1}{x}+\frac{A_2}{(x+1)^3}+\frac{A_3}{(x+1)^2}+\frac{A_4}{x+1}
f(x)=xA1+(x+1)3A2+(x+1)2A3+x+1A4
用留数法求出各项系数
A
1
=
[
x
−
2
x
(
x
+
1
)
3
⋅
x
]
∣
x
=
0
=
−
2
A
2
=
[
x
−
2
x
(
x
+
1
)
3
⋅
(
x
+
1
)
3
]
∣
x
=
−
1
=
3
A
3
=
1
(
3
−
2
)
!
⋅
d
d
x
[
x
−
2
x
(
x
+
1
)
3
⋅
(
x
+
1
)
3
]
∣
x
=
−
1
=
2
A
4
=
1
(
3
−
1
)
!
⋅
d
2
d
x
2
[
x
−
2
x
(
x
+
1
)
3
⋅
(
x
+
1
)
3
]
∣
x
=
−
1
=
2
\begin{aligned} A_1&=\left[ \frac{x-2}{x(x+1)^3} \cdot x \right] \bigg|_{x=0}=-2 \\ A_2&=\left[ \frac{x-2}{x(x+1)^3} \cdot (x+1)^3 \right] \bigg|_{x=-1}=3 \\ A_3&=\frac{1}{(3-2)!} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{x-2}{x(x+1)^3} \cdot (x+1)^3 \right] \bigg|_{x=-1}=2 \\ A_4&=\frac{1}{(3-1)!} \cdot \frac{\mathrm{d^2}}{\mathrm{d}x^2} \left[ \frac{x-2}{x(x+1)^3} \cdot (x+1)^3 \right] \bigg|_{x=-1}=2 \end{aligned}
A1A2A3A4=[x(x+1)3x−2⋅x]
x=0=−2=[x(x+1)3x−2⋅(x+1)3]
x=−1=3=(3−2)!1⋅dxd[x(x+1)3x−2⋅(x+1)3]
x=−1=2=(3−1)!1⋅dx2d2[x(x+1)3x−2⋅(x+1)3]
x=−1=2
所以结果为
f
(
x
)
=
−
2
x
+
3
(
x
+
1
)
3
+
2
(
x
+
1
)
2
+
2
x
+
1
f(x)=-\frac{2}{x}+\frac{3}{(x+1)^3}+\frac{2}{(x+1)^2}+\frac{2}{x+1}
f(x)=−x2+(x+1)33+(x+1)22+x+12
【例 3】分解以下分式
f
(
x
)
=
1
x
(
2
x
+
3
)
f(x)=\frac{1}{x(2x+3)}
f(x)=x(2x+3)1
【解】将分式分解为
f
(
x
)
=
1
2
x
(
x
+
3
2
)
=
A
1
x
+
A
2
x
+
3
2
\begin{aligned} f(x)=\frac{\frac{1}{2}}{x(x+\frac{3}{2})} = \frac{A_1}{x}+\frac{A_2}{x+\frac{3}{2}} \end{aligned}
f(x)=x(x+23)21=xA1+x+23A2
用留数法求出各项系数
A
1
=
[
1
2
x
(
x
+
3
2
)
⋅
x
]
∣
x
=
0
=
1
3
A
2
=
[
1
2
x
(
x
+
3
2
)
⋅
(
x
+
3
2
)
]
∣
x
=
−
3
2
=
−
1
3
\begin{aligned} A_1&=\left[ \frac{\frac{1}{2}}{x(x+\frac{3}{2})} \cdot x \right] \bigg|_{x=0}=\frac{1}{3} \\ A_2&=\left[ \frac{\frac{1}{2}}{x(x+\frac{3}{2})} \cdot (x+\frac{3}{2}) \right] \bigg|_{x=-\frac{3}{2}}=-\frac{1}{3} \end{aligned}
A1A2=[x(x+23)21⋅x]
x=0=31=[x(x+23)21⋅(x+23)]
x=−23=−31
所以结果为
f
(
x
)
=
1
3
x
−
1
3
x
+
3
2
=
1
3
x
−
2
3
2
x
+
3
f(x)=\frac{\frac{1}{3}}{x}-\frac{\frac{1}{3}}{x+\frac{3}{2}} =\frac{\frac{1}{3}}{x}-\frac{\frac{2}{3}}{2x+3}
f(x)=x31−x+2331=x31−2x+332
【例 4】分解以下分式
f
(
x
)
=
1
x
(
2
x
−
1
)
3
f(x)=\frac{1}{x(2x-1)^3}
f(x)=x(2x−1)31
【解】将分式分解为
f
(
x
)
=
1
8
x
(
x
−
1
2
)
3
=
A
1
x
+
A
2
(
x
−
1
2
)
3
+
A
3
(
x
−
1
2
)
2
+
A
4
x
−
1
2
f(x)=\frac{\frac{1}{8}}{x(x-\frac{1}{2})^3}=\frac{A_1}{x}+\frac{A_2}{(x-\frac{1}{2})^3}+\frac{A_3}{(x-\frac{1}{2})^2}+\frac{A_4}{x-\frac{1}{2}}
f(x)=x(x−21)381=xA1+(x−21)3A2+(x−21)2A3+x−21A4
用留数法求出各项系数
A
1
=
[
1
8
x
(
x
−
1
2
)
3
⋅
x
]
∣
x
=
0
=
−
1
A
2
=
[
1
8
x
(
x
−
1
2
)
3
⋅
(
x
−
1
2
)
3
]
∣
x
=
1
2
=
1
4
A
3
=
1
(
3
−
2
)
!
⋅
d
d
x
[
1
8
x
(
x
−
1
2
)
3
⋅
(
x
−
1
2
)
3
]
∣
x
=
1
2
=
−
1
2
A
4
=
1
(
3
−
1
)
!
⋅
d
2
d
x
2
[
1
8
x
(
x
−
1
2
)
3
⋅
(
x
−
1
2
)
3
]
∣
x
=
1
2
=
1
\begin{aligned} A_1&=\left[ \frac{\frac{1}{8}}{x(x-\frac{1}{2})^3} \cdot x \right] \bigg|_{x=0}=-1 \\ A_2&=\left[ \frac{\frac{1}{8}}{x(x-\frac{1}{2})^3} \cdot (x-\frac{1}{2})^3 \right] \bigg|_{x=\frac{1}{2}}=\frac{1}{4} \\ A_3&=\frac{1}{(3-2)!} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{\frac{1}{8}}{x(x-\frac{1}{2})^3} \cdot (x-\frac{1}{2})^3 \right] \bigg|_{x=\frac{1}{2}}=-\frac{1}{2} \\ A_4&=\frac{1}{(3-1)!} \cdot \frac{\mathrm{d^2}}{\mathrm{d}x^2} \left[ \frac{\frac{1}{8}}{x(x-\frac{1}{2})^3} \cdot (x-\frac{1}{2})^3 \right] \bigg|_{x=\frac{1}{2}}=1 \end{aligned}
A1A2A3A4=[x(x−21)381⋅x]
x=0=−1=[x(x−21)381⋅(x−21)3]
x=21=41=(3−2)!1⋅dxd[x(x−21)381⋅(x−21)3]
x=21=−21=(3−1)!1⋅dx2d2[x(x−21)381⋅(x−21)3]
x=21=1
所以结果为
f
(
x
)
=
−
1
x
+
1
4
(
x
−
1
2
)
3
−
1
2
(
x
−
1
2
)
2
+
1
x
−
1
2
=
−
1
x
+
2
(
2
x
−
1
)
3
−
2
(
2
x
−
1
)
2
+
2
2
x
−
1
\begin{aligned} f(x)&=-\frac{1}{x}+\frac{\frac{1}{4}}{(x-\frac{1}{2})^3}-\frac{\frac{1}{2}}{(x-\frac{1}{2})^2}+\frac{1}{x-\frac{1}{2}} \\ &=-\frac{1}{x}+\frac{2}{(2x-1)^3}-\frac{2}{(2x-1)^2}+\frac{2}{2x-1} \end{aligned}
f(x)=−x1+(x−21)341−(x−21)221+x−211=−x1+(2x−1)32−(2x−1)22+2x−12
【例 5】(2019 年真题)分解以下分式
f ( x ) = 3 x + 6 ( x − 1 ) 2 ( x 2 + x + 1 ) f(x) = \frac{3x+6}{(x-1)^2 (x^2+x+1)} f(x)=(x−1)2(x2+x+1)3x+6
【解】将分式分解为
f
(
x
)
=
A
1
(
x
−
1
)
2
+
A
2
x
−
1
+
M
x
+
N
x
2
+
x
+
1
f(x) = \frac{A_1}{(x-1)^2} + \frac{A_2}{x-1} + \frac{Mx+N}{x^2+x+1}
f(x)=(x−1)2A1+x−1A2+x2+x+1Mx+N
其中系数
A
1
,
A
2
A_1,A_2
A1,A2易求
A
1
=
[
3
x
+
6
(
x
−
1
)
2
(
x
2
+
x
+
1
)
⋅
(
x
−
1
)
2
]
∣
x
=
1
=
3
A
2
=
1
(
2
−
1
)
!
⋅
d
d
x
[
3
x
+
6
(
x
−
1
)
2
(
x
2
+
x
+
1
)
⋅
(
x
−
1
)
2
]
∣
x
=
1
=
−
2
\begin{aligned} A_1 &= \left[ \frac{3x+6}{(x-1)^2 (x^2+x+1)} \cdot (x-1)^2 \right] \bigg|_{x=1}=3 \\ A_2 &= \frac{1}{(2-1)!} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{3x+6}{(x-1)^2 (x^2+x+1)} \cdot (x-1)^2 \right] \bigg|_{x=1}=-2 \end{aligned}
A1A2=[(x−1)2(x2+x+1)3x+6⋅(x−1)2]
x=1=3=(2−1)!1⋅dxd[(x−1)2(x2+x+1)3x+6⋅(x−1)2]
x=1=−2
对于系数 M , N M,N M,N可用以下方法:
先令
x
0
x_0
x0为
x
2
+
x
+
1
=
0
x^2+x+1=0
x2+x+1=0的一个复数根,然后在等式两边同乘
(
x
2
+
x
+
1
)
(x^2+x+1)
(x2+x+1),并代入
x
=
x
0
x=x_0
x=x0,此时含有
(
x
2
+
x
+
1
)
(x^2+x+1)
(x2+x+1)的项将被消去,即
3
x
+
6
(
x
−
1
)
2
(
x
2
+
x
+
1
)
=
A
1
(
x
−
1
)
2
+
A
2
x
−
1
+
M
x
+
N
x
2
+
x
+
1
⇒
3
x
+
6
(
x
−
1
)
2
=
A
1
(
x
2
+
x
+
1
)
(
x
−
1
)
2
+
A
2
(
x
2
+
x
+
1
)
x
−
1
+
(
M
x
+
N
)
⇒
3
x
0
+
6
(
x
0
−
1
)
2
=
M
x
0
+
N
(代入
x
=
x
0
,消去含
x
2
+
x
+
1
的项)
\begin{aligned} & \frac{3x+6}{(x-1)^2 (x^2+x+1)} = \frac{A_1}{(x-1)^2} + \frac{A_2}{x-1} + \frac{Mx+N}{x^2+x+1} \\ \Rightarrow & \frac{3x+6}{(x-1)^2} = \frac{A_1(x^2+x+1)}{(x-1)^2} + \frac{A_2(x^2+x+1)}{x-1} + (Mx+N) \\ \Rightarrow & \frac{3x_0+6}{(x_0-1)^2} = Mx_0+N (代入x=x_0,消去含x^2+x+1的项) \end{aligned}
⇒⇒(x−1)2(x2+x+1)3x+6=(x−1)2A1+x−1A2+x2+x+1Mx+N(x−1)23x+6=(x−1)2A1(x2+x+1)+x−1A2(x2+x+1)+(Mx+N)(x0−1)23x0+6=Mx0+N(代入x=x0,消去含x2+x+1的项)
现考虑将上式进一步化简,把二次项
(
x
0
−
1
)
2
(x_0-1)^2
(x0−1)2凑成
(
x
2
+
x
+
1
)
(x^2+x+1)
(x2+x+1),即
3
x
0
+
6
(
x
0
−
1
)
2
=
M
x
0
+
N
⇒
3
x
0
+
6
x
0
2
−
2
x
0
+
1
=
M
x
0
+
N
⇒
3
x
0
+
6
(
x
0
2
+
x
0
+
1
)
−
3
x
0
=
M
x
0
+
N
⇒
3
x
0
+
6
−
3
x
0
=
M
x
0
+
N
⇒
−
1
−
2
x
0
=
M
x
0
+
N
\begin{aligned} & \frac{3x_0+6}{(x_0-1)^2} = Mx_0+N \\ \Rightarrow & \frac{3x_0+6}{x_0^2-2x_0+1} = Mx_0+N \\ \Rightarrow & \frac{3x_0+6}{(x_0^2+x_0+1)-3x_0} = Mx_0+N \\ \Rightarrow & \frac{3x_0+6}{-3x_0} = Mx_0+N \\ \Rightarrow & -1 - \frac{2}{x_0} = Mx_0+N \end{aligned}
⇒⇒⇒⇒(x0−1)23x0+6=Mx0+Nx02−2x0+13x0+6=Mx0+N(x02+x0+1)−3x03x0+6=Mx0+N−3x03x0+6=Mx0+N−1−x02=Mx0+N
此时将其中一个复数根
x
0
=
−
1
2
+
3
2
i
x_0=-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i}
x0=−21+23i代入等式两端,并对比左右求出系数,即
−
1
−
2
−
1
2
+
3
2
i
=
M
(
−
1
2
+
3
2
i
)
+
N
⇒
3
i
=
3
2
i
M
+
(
N
−
M
2
)
(左边分式上下同乘共轭复数)
⇒
M
=
2
,
N
=
1
(对比左右求出系数)
\begin{aligned} & -1 - \frac{2}{-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i}} = M(-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i})+N \\ \Rightarrow & \sqrt{3}\mathrm{i} = \frac{\sqrt{3}}{2}\mathrm{i}M + (N-\frac{M}{2}) (左边分式上下同乘共轭复数)\\ \Rightarrow & M=2,N=1(对比左右求出系数) \end{aligned}
⇒⇒−1−−21+23i2=M(−21+23i)+N3i=23iM+(N−2M)(左边分式上下同乘共轭复数)M=2,N=1(对比左右求出系数)
所以结果为
f
(
x
)
=
3
(
x
−
1
)
2
−
2
x
−
1
+
2
x
+
1
x
2
+
x
+
1
f(x) = \frac{3}{(x-1)^2} - \frac{2}{x-1} + \frac{2x+1}{x^2+x+1}
f(x)=(x−1)23−x−12+x2+x+12x+1
可见这种方法大大简化了运算。
【例 6】分解以下分式
f
(
x
)
=
x
+
2
(
2
x
+
1
)
(
x
2
+
x
+
1
)
f(x) = \frac{x+2}{(2x+1)(x^2+x+1)}
f(x)=(2x+1)(x2+x+1)x+2
【解】将分式分解为
f
(
x
)
=
1
2
x
+
1
(
x
+
1
2
)
(
x
2
+
x
+
1
)
=
A
x
+
1
2
+
M
x
+
N
x
2
+
x
+
1
f(x) = \frac{\frac{1}{2}x+1}{(x+\frac{1}{2})(x^2+x+1)} = \frac{A}{x+\frac{1}{2}} + \frac{Mx+N}{x^2+x+1}
f(x)=(x+21)(x2+x+1)21x+1=x+21A+x2+x+1Mx+N
其中系数
A
A
A易求
A
=
[
1
2
x
+
1
(
x
+
1
2
)
(
x
2
+
x
+
1
)
⋅
(
x
+
1
2
)
]
∣
x
=
−
1
2
=
1
\begin{aligned} A &= \left[ \frac{\frac{1}{2}x+1}{(x+\frac{1}{2})(x^2+x+1)} \cdot (x+\frac{1}{2}) \right] \bigg|_{x=-\frac{1}{2}}=1 \end{aligned}
A=[(x+21)(x2+x+1)21x+1⋅(x+21)]
x=−21=1
对于系数
M
,
N
M,N
M,N也可使用例 5 的方法求解,先令
x
0
x_0
x0为
x
2
+
x
+
1
=
0
x^2+x+1=0
x2+x+1=0的一个复数根,然后在等式两边同乘
(
x
2
+
x
+
1
)
(x^2+x+1)
(x2+x+1),并代入
x
=
x
0
x=x_0
x=x0,此时含有
(
x
2
+
x
+
1
)
(x^2+x+1)
(x2+x+1)的项将被消去,即
1
2
x
+
1
(
x
+
1
2
)
(
x
2
+
x
+
1
)
=
A
x
+
1
2
+
M
x
+
N
x
2
+
x
+
1
⇒
1
2
x
+
1
x
+
1
2
=
A
(
x
2
+
x
+
1
)
x
+
1
2
+
(
M
x
+
N
)
⇒
1
2
x
0
+
1
x
0
+
1
2
=
A
(
x
0
2
+
x
0
+
1
)
x
0
+
1
2
+
(
M
x
0
+
N
)
⇒
1
2
x
0
+
1
x
0
+
1
2
=
M
x
0
+
N
⇒
x
0
+
2
2
x
0
+
1
=
M
x
0
+
N
\begin{aligned} & \frac{\frac{1}{2}x+1}{(x+\frac{1}{2})(x^2+x+1)} = \frac{A}{x+\frac{1}{2}} + \frac{Mx+N}{x^2+x+1} \\ \Rightarrow & \frac{\frac{1}{2}x+1}{x+\frac{1}{2}} = \frac{A(x^2+x+1)}{x+\frac{1}{2}} + (Mx+N) \\ \Rightarrow & \frac{\frac{1}{2}x_0+1}{x_0+\frac{1}{2}} = \frac{A(x_0^2+x_0+1)}{x_0+\frac{1}{2}} + (Mx_0+N) \\ \Rightarrow & \frac{\frac{1}{2}x_0+1}{x_0+\frac{1}{2}} = Mx_0+N \\ \Rightarrow & \frac{x_0+2}{2x_0+1} = Mx_0+N \end{aligned}
⇒⇒⇒⇒(x+21)(x2+x+1)21x+1=x+21A+x2+x+1Mx+Nx+2121x+1=x+21A(x2+x+1)+(Mx+N)x0+2121x0+1=x0+21A(x02+x0+1)+(Mx0+N)x0+2121x0+1=Mx0+N2x0+1x0+2=Mx0+N
现考虑将等式左边凑出 ( x 2 + x + 1 ) (x^2+x+1) (x2+x+1),但是分子、分母均为一次项,凑不出二次项出来,所以分子、分母需要乘以一个形如 ( A x + B ) (Ax+B) (Ax+B)的项,接着再凑出 ( x 2 + x + 1 ) (x^2+x+1) (x2+x+1)。
如何确定这个
(
A
x
+
B
)
(Ax+B)
(Ax+B)的项呢?使用长除法,用
(
x
2
+
x
+
1
)
(x^2+x+1)
(x2+x+1)去除以分母
2
x
+
1
2x+1
2x+1,得到:
x
2
+
x
+
1
=
(
2
x
+
1
)
(
1
2
x
+
1
4
)
+
3
4
x^2+x+1 = (2x+1)(\frac{1}{2}x+\frac{1}{4}) + \frac{3}{4}
x2+x+1=(2x+1)(21x+41)+43,于是等式左边上下同乘
(
1
2
x
+
1
4
)
(\frac{1}{2}x+\frac{1}{4})
(21x+41)得:
x
0
+
2
2
x
0
+
1
=
M
x
0
+
N
⇒
(
x
0
+
2
)
(
1
2
x
0
+
1
4
)
(
2
x
0
+
1
)
(
1
2
x
0
+
1
4
)
=
M
x
0
+
N
⇒
1
2
x
0
2
+
5
4
x
0
+
1
2
(
x
0
2
+
x
0
+
1
)
−
3
4
=
M
x
0
+
N
⇒
1
2
(
x
0
2
+
x
0
+
1
)
+
3
4
x
0
(
x
0
2
+
x
0
+
1
)
−
3
4
=
M
x
0
+
N
(等式左边的分子也可凑
x
2
+
x
+
1
)
⇒
3
4
x
0
−
3
4
=
M
x
0
+
N
⇒
−
x
0
=
M
x
0
+
N
⇒
M
=
−
1
,
N
=
0
\begin{aligned} & \frac{x_0+2}{2x_0+1} = Mx_0+N \\ \Rightarrow & \frac{(x_0+2)(\frac{1}{2}x_0+\frac{1}{4})}{(2x_0+1)(\frac{1}{2}x_0+\frac{1}{4})} = Mx_0+N \\ \Rightarrow & \frac{\frac{1}{2}x_0^2+\frac{5}{4}x_0+\frac{1}{2}}{(x_0^2+x_0+1)-\frac{3}{4}} = Mx_0+N \\ \Rightarrow & \frac{\frac{1}{2}(x_0^2+x_0+1)+\frac{3}{4}x_0}{(x_0^2+x_0+1)-\frac{3}{4}} = Mx_0+N (等式左边的分子也可凑x^2+x+1)\\ \Rightarrow & \frac{\frac{3}{4}x_0}{-\frac{3}{4}} = Mx_0+N \\ \Rightarrow & -x_0 = Mx_0+N \\ \Rightarrow & M=-1,N=0 \end{aligned}
⇒⇒⇒⇒⇒⇒2x0+1x0+2=Mx0+N(2x0+1)(21x0+41)(x0+2)(21x0+41)=Mx0+N(x02+x0+1)−4321x02+45x0+21=Mx0+N(x02+x0+1)−4321(x02+x0+1)+43x0=Mx0+N(等式左边的分子也可凑x2+x+1)−4343x0=Mx0+N−x0=Mx0+NM=−1,N=0
当然,用
(
x
2
+
x
+
1
)
(x^2+x+1)
(x2+x+1)去除以分子
x
+
2
x+2
x+2也是可以的,得到:
x
2
+
x
+
1
=
(
x
+
2
)
(
x
−
1
)
+
3
x^2+x+1 = (x+2)(x-1)+3
x2+x+1=(x+2)(x−1)+3,于是等式左边上下同乘
(
x
−
1
)
(x-1)
(x−1)得:
x
0
+
2
2
x
0
+
1
=
M
x
0
+
N
⇒
(
x
0
+
2
)
(
x
0
−
1
)
(
2
x
0
+
1
)
(
x
0
−
1
)
=
M
x
0
+
N
⇒
(
x
0
2
+
x
0
+
1
)
−
3
2
x
0
2
−
x
0
−
1
=
M
x
0
+
N
⇒
(
x
0
2
+
x
0
+
1
)
−
3
2
(
x
0
2
+
x
0
+
1
)
−
3
x
0
−
3
=
M
x
0
+
N
(等式左边的分母也可凑
x
2
+
x
+
1
)
⇒
1
x
0
+
1
=
M
x
0
+
N
\begin{aligned} & \frac{x_0+2}{2x_0+1} = Mx_0+N \\ \Rightarrow & \frac{(x_0+2)(x_0-1)}{(2x_0+1)(x_0-1)} = Mx_0+N \\ \Rightarrow & \frac{(x_0^2+x_0+1)-3}{2x_0^2-x_0-1} = Mx_0+N \\ \Rightarrow & \frac{(x_0^2+x_0+1)-3}{2(x_0^2+x_0+1)-3x_0-3} = Mx_0+N(等式左边的分母也可凑x^2+x+1)\\ \Rightarrow & \frac{1}{x_0+1} = Mx_0+N \\ \end{aligned}
⇒⇒⇒⇒2x0+1x0+2=Mx0+N(2x0+1)(x0−1)(x0+2)(x0−1)=Mx0+N2x02−x0−1(x02+x0+1)−3=Mx0+N2(x02+x0+1)−3x0−3(x02+x0+1)−3=Mx0+N(等式左边的分母也可凑x2+x+1)x0+11=Mx0+N
此时将其中一个复数根
x
0
=
−
1
2
+
3
2
i
x_0=-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i}
x0=−21+23i代入等式两端,并对比左右求出系数,即
1
1
2
+
3
2
i
=
M
(
−
1
2
+
3
2
i
)
+
N
⇒
1
2
−
3
2
i
=
3
2
i
M
+
(
N
−
M
2
)
(左边分式上下同乘共轭复数)
⇒
M
=
−
1
,
N
=
0
(对比左右求出系数)
\begin{aligned} & \frac{1}{\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i}} = M(-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i})+N \\ \Rightarrow & \frac{1}{2}-\frac{\sqrt{3}}{2}\mathrm{i} = \frac{\sqrt{3}}{2}\mathrm{i}M + (N-\frac{M}{2})(左边分式上下同乘共轭复数)\\ \Rightarrow & M=-1,N=0(对比左右求出系数) \end{aligned}
⇒⇒21+23i1=M(−21+23i)+N21−23i=23iM+(N−2M)(左边分式上下同乘共轭复数)M=−1,N=0(对比左右求出系数)
对比上面两种方法,可见第一种方法更简便。
所以结果为
f
(
x
)
=
2
2
x
+
1
−
x
x
2
+
x
+
1
f(x) = \frac{2}{2x+1} - \frac{x}{x^2+x+1}
f(x)=2x+12−x2+x+1x