留数法分解有理真分式

一、真分式和假分式

P n ( x ) P_n(x) Pn(x) Q m ( x ) Q_m(x) Qm(x)表示 n n n次和 m m m次的多项式函数,则
{ P n ( x ) Q m ( x ) 为假分式 , n ≥ m P n ( x ) Q m ( x ) 为真分式 , n < m \begin{cases} \frac{P_n(x)}{Q_m(x)}为假分式, & n \geq m \\ \frac{P_n(x)}{Q_m(x)}为真分式, & n < m \end{cases} {Qm(x)Pn(x)为假分式,Qm(x)Pn(x)为真分式,nmn<m

假分式可使用长除法分解,此处不再赘述。

二、有理真分式的分解形式

有理真分式 P n ( x ) Q m ( x ) \frac{P_n(x)}{Q_m(x)} Qm(x)Pn(x)可分解成如下四种形式:
A x − a , A ( x − a ) l , M x + N x 2 + p x + q , M x + N ( x 2 + p x + q ) l \frac{A}{x-a},\frac{A}{(x-a)^l},\frac{Mx+N}{x^2+px+q},\frac{Mx+N}{(x^2+px+q)^l} xaA,(xa)lA,x2+px+qMx+N,(x2+px+q)lMx+N

两类常见的分式均可以被唯一分解为:
( 1 ) P ( x ) ( x − a ) k = A 1 x − a + A 2 ( x − a ) 2 + . . . + A k ( x − a ) k ( 2 ) P ( x ) ( x 2 + p x + q ) k = M 1 x + N 1 x 2 + p x + q + M 2 x + N 2 ( x 2 + p x + q ) 2 + . . . + M k x + N k ( x 2 + p x + q ) k \begin{aligned} (1)&\frac{P(x)}{(x-a)^k} = \frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} +...+ \frac{A_k}{(x-a)^k} \\ (2)&\frac{P(x)}{(x^2+px+q)^k} = \frac{M_1x+N_1}{x^2+px+q} + \frac{M_2x+N_2}{(x^2+px+q)^2}+...+ \frac{M_kx+N_k}{(x^2+px+q)^k} \end{aligned} 12(xa)kP(x)=xaA1+(xa)2A2+...+(xa)kAk(x2+px+q)kP(x)=x2+px+qM1x+N1+(x2+px+q)2M2x+N2+...+(x2+px+q)kMkx+Nk

注意, x 2 + p x + q x^2+px+q x2+px+q不能在实数域内进行因式分解。

三、留数法求解待定系数

对于第一类分式,可以采用留数法求解待定系数。留数法又可以分为两种情形:一种是分母 Q m ( x ) Q_m(x) Qm(x)分解为只有单根的形式,比如 ( x − a ) ( x − b ) ( x − c ) (x-a)(x-b)(x-c) (xa)(xb)(xc);另一种是是分母 Q m ( x ) Q_m(x) Qm(x)可分解为存在重根的形式,比如 ( x − a ) 2 ( x − b ) ( x − c ) (x-a)^2(x-b)(x-c) (xa)2(xb)(xc)

1. 分母 Q m ( x ) Q_m(x) Qm(x)因式分解后只有单根的情况

(1)若分母 Q m ( x ) Q_m(x) Qm(x)可分解为
Q m ( x ) = ( x − b 1 ) ( x − b 2 ) ⋅ ⋅ ⋅ ( x − b m ) Q_m(x)=(x-b_1)(x-b_2)···(x-b_m) Qm(x)=(xb1)(xb2)⋅⋅⋅(xbm)

则有理真分式可分解为
P n ( x ) Q m ( x ) = A 1 x − b 1 + A 2 x − b 2 + . . . + A m x − b m \frac{P_n(x)}{Q_m(x)}=\frac{A_1}{x-b_1}+\frac{A_2}{x-b_2}+...+\frac{A_m}{x-b_m} Qm(x)Pn(x)=xb1A1+xb2A2+...+xbmAm

此时系数为
A k = [ P n ( x ) Q m ( x ) ⋅ ( x − b k ) ] ∣ x = b k , k ∈ [ 1 , m ] A_k=\left[ \frac{P_n(x)}{Q_m(x)} \cdot (x-b_k) \right] \bigg|_{x=b_k},k\in[1,m] Ak=[Qm(x)Pn(x)(xbk)] x=bk,k[1,m]

(2)若分母 Q m ( x ) Q_m(x) Qm(x)可分解为
Q m ( x ) = ( a 1 x − b 1 ) ( a 2 x − b 2 ) ⋅ ⋅ ⋅ ( a m x − b m ) Q_m(x)=(a_1x-b_1)(a_2x-b_2)···(a_mx-b_m) Qm(x)=(a1xb1)(a2xb2)⋅⋅⋅(amxbm)

则上述结论不再适用。应先把 Q m ( x ) Q_m(x) Qm(x)的每一个因式中 x x x的系数化为 1 1 1,才能继续使用结论。将分母 Q m ( x ) Q_m(x) Qm(x)整理成
Q m ( x ) = a 1 ( x − b 1 a 1 ) ⋅ a 2 ( x − b 2 a 2 ) ⋅ ⋅ ⋅ a m ( x − b m a m ) Q_m(x)=a_1(x-\frac{b_1}{a_1}) \cdot a_2(x-\frac{b_2}{a_2})···a_m(x-\frac{b_m}{a_m}) Qm(x)=a1(xa1b1)a2(xa2b2)⋅⋅⋅am(xambm)


P n ′ ( x ) = P n ( x ) a 1 a 2 ⋅ ⋅ ⋅ a m Q m ′ ( x ) = ( x − b 1 a 1 ) ( x − b 2 a 2 ) ⋅ ⋅ ⋅ ( x − b m a m ) \begin{aligned} P_n^{'}(x)&=\frac{P_n(x)}{a_1a_2···a_m}\\ Q_m^{'}(x)&=(x-\frac{b_1}{a_1})(x-\frac{b_2}{a_2})···(x-\frac{b_m}{a_m}) \end{aligned} Pn(x)Qm(x)=a1a2⋅⋅⋅amPn(x)=(xa1b1)(xa2b2)⋅⋅⋅(xambm)

则有理真分式可分解为
P n ( x ) Q m ( x ) = P n ′ ( x ) Q m ′ ( x ) = A 1 x − b 1 a 1 + A 2 x − b 2 a 2 + . . . + A m x − b m a m \begin{aligned} \frac{P_n(x)}{Q_m(x)}= \frac{P_n^{'}(x)}{Q_m^{'}(x)}=\frac{A_1}{x-\frac{b_1}{a_1}}+\frac{A_2}{x-\frac{b_2}{a_2}}+...+\frac{A_m}{x-\frac{b_m}{a_m}} \end{aligned} Qm(x)Pn(x)=Qm(x)Pn(x)=xa1b1A1+xa2b2A2+...+xambmAm

P n ′ ( x ) Q m ′ ( x ) \frac{P_n^{'}(x)}{Q_m^{'}(x)} Qm(x)Pn(x)使用留数法,此时系数为
A k = [ P n ′ ( x ) Q m ′ ( x ) ⋅ ( x − b k a k ) ] ∣ x = b k a k , k ∈ [ 1 , m ] A_k=\left[ \frac{P_n^{'}(x)}{Q_m^{'}(x)} \cdot (x-\frac{b_k}{a_k}) \right] \bigg|_{x=\frac{b_k}{a_k}},k\in[1,m] Ak=[Qm(x)Pn(x)(xakbk)] x=akbk,k[1,m]

2. 分母 Q m ( x ) Q_m(x) Qm(x)因式分解后存在重根的情况

(1)若分母 Q m ( x ) Q_m(x) Qm(x)可分解为
Q m ( x ) = ( x − b ) m Q_m(x)=(x-b)^m Qm(x)=(xb)m

则有理真分式可分解为
P n ( x ) Q m ( x ) = A 1 x − b + A 2 ( x − b ) 2 + . . . + A m ( x − b ) m \frac{P_n(x)}{Q_m(x)}=\frac{A_1}{x-b}+\frac{A_2}{(x-b)^2}+...+\frac{A_m}{(x-b)^m} Qm(x)Pn(x)=xbA1+(xb)2A2+...+(xb)mAm

此时系数为
A m = [ P n ( x ) Q m ( x ) ⋅ ( x − b ) m ] ∣ x = b m A k = 1 ( m − k ) ! ⋅ d m − k d x m − k [ P n ( x ) Q m ( x ) ⋅ ( x − b ) m ] ∣ x = b k , k ∈ [ 1 , m − 1 ] \begin{aligned} A_m&=\left[ \frac{P_n(x)}{Q_m(x)} \cdot (x-b)^m \right] \bigg|_{x=b_m} \\ A_k&=\frac{1}{(m-k)!} \cdot \frac{\mathrm{d}^{m-k}}{\mathrm{d}x^{m-k}} \left[ \frac{P_n(x)}{Q_m(x)} \cdot (x-b)^m \right] \bigg|_{x=b_k},k\in[1,m-1] \end{aligned} AmAk=[Qm(x)Pn(x)(xb)m] x=bm=(mk)!1dxmkdmk[Qm(x)Pn(x)(xb)m] x=bk,k[1,m1]

(2)若分母 Q m ( x ) Q_m(x) Qm(x)可分解为
Q m ( x ) = ( a x − b ) m Q_m(x)=(ax-b)^m Qm(x)=(axb)m

则上述结论不再适用。应先把 Q m ( x ) Q_m(x) Qm(x)的因式中 x x x的系数化为 1 1 1,才能继续使用结论。将分母 Q m ( x ) Q_m(x) Qm(x)整理成
Q m ( x ) = a m ⋅ ( x − b a ) m Q_m(x)=a^m \cdot (x-\frac{b}{a})^m \\ Qm(x)=am(xab)m


P n ′ ( x ) = P n ( x ) a m Q m ′ ( x ) = ( x − b a ) m \begin{aligned} P_n^{'}(x)&=\frac{P_n(x)}{a^m} \\ Q_m^{'}(x)&=(x-\frac{b}{a})^m \end{aligned} Pn(x)Qm(x)=amPn(x)=(xab)m

将有理真分式化为
P n ( x ) Q m ( x ) = P n ′ ( x ) Q m ′ ( x ) = A 1 x − b a + A 2 ( x − b a ) 2 + . . . + A m ( x − b a ) m \begin{aligned} \frac{P_n(x)}{Q_m(x)}=\frac{P_n^{'}(x)}{Q_m^{'}(x)}=\frac{A_1}{x-\frac{b}{a}}+\frac{A_2}{(x-\frac{b}{a})^2}+...+\frac{A_m}{(x-\frac{b}{a})^m} \end{aligned} Qm(x)Pn(x)=Qm(x)Pn(x)=xabA1+(xab)2A2+...+(xab)mAm

P n ′ ( x ) Q m ′ ( x ) \frac{P_n^{'}(x)}{Q_m^{'}(x)} Qm(x)Pn(x)使用留数法,此时系数为
A m = [ P n ′ ( x ) Q m ′ ( x ) ⋅ ( x − b a ) m ] ∣ x = b a A k = 1 ( m − k ) ! ⋅ d m − k d x m − k [ P n ′ ( x ) Q m ′ ( x ) ⋅ ( x − b a ) m ] ∣ x = b a , k ∈ [ 1 , m − 1 ] \begin{aligned} A_m&=\left[ \frac{P_n^{'}(x)}{Q_m^{'}(x)} \cdot \left(x-\frac{b}{a}\right)^m \right] \bigg|_{x=\frac{b}{a}} \\ A_k&=\frac{1}{(m-k)!} \cdot \frac{\mathrm{d}^{m-k}}{\mathrm{d}x^{m-k}} \left[ \frac{P_n^{'}(x)}{Q_m^{'}(x)} \cdot \left(x-\frac{b}{a}\right)^m \right] \bigg|_{x=\frac{b}{a}},k\in[1,m-1] \end{aligned} AmAk=[Qm(x)Pn(x)(xab)m] x=ab=(mk)!1dxmkdmk[Qm(x)Pn(x)(xab)m] x=ab,k[1,m1]

3. 分母 Q m ( x ) Q_m(x) Qm(x)因式分解后存在复根的情况

分母不可再分解的分式,形如
M 1 x + N 1 x 2 + p x + q \frac{M_1x+N_1}{x^2+px+q} x2+px+qM1x+N1

其分母无实数根,只有复数根。我们也可使用留数法解决复根情况,将复数根代入计算,但是计算较为繁琐。不过有一种很巧妙的方法(见有理函数积分计算法则——留数思想法)可大大降低运算量,见例 5 及之后例题。

四、相关例题

【例 1】分解以下分式
f ( x ) = 10 ( x + 2 ) ( x + 5 ) x ( x + 1 ) ( x + 3 ) f(x)=\frac{10(x+2)(x+5)}{x(x+1)(x+3)} f(x)=x(x+1)(x+3)10(x+2)(x+5)

【解】将分式分解为
f ( x ) = A 1 x + A 2 x + 1 + A 3 x + 3 f(x)=\frac{A_1}{x}+\frac{A_2}{x+1}+\frac{A_3}{x+3} f(x)=xA1+x+1A2+x+3A3

用留数法求出各项系数
A 1 = [ 10 ( x + 2 ) ( x + 5 ) x ( x + 1 ) ( x + 3 ) ⋅ x ] ∣ x = 0 = 100 3 A 2 = [ 10 ( x + 2 ) ( x + 5 ) x ( x + 1 ) ( x + 3 ) ⋅ ( x + 1 ) ] ∣ x = − 1 = − 20 A 3 = [ 10 ( x + 2 ) ( x + 5 ) x ( x + 1 ) ( x + 3 ) ⋅ ( x + 3 ) ] ∣ x = − 3 = − 10 3 \begin{aligned} A_1&=\left[ \frac{10(x+2)(x+5)}{x(x+1)(x+3)} \cdot x \right] \bigg|_{x=0}=\frac{100}{3} \\ A_2&=\left[ \frac{10(x+2)(x+5)}{x(x+1)(x+3)} \cdot (x+1) \right] \bigg|_{x=-1}=-20 \\ A_3&=\left[ \frac{10(x+2)(x+5)}{x(x+1)(x+3)} \cdot (x+3) \right] \bigg|_{x=-3}=-\frac{10}{3} \end{aligned} A1A2A3=[x(x+1)(x+3)10(x+2)(x+5)x] x=0=3100=[x(x+1)(x+3)10(x+2)(x+5)(x+1)] x=1=20=[x(x+1)(x+3)10(x+2)(x+5)(x+3)] x=3=310

所以结果为
f ( x ) = 100 3 x + − 20 x + 1 − 10 3 x + 3 f(x)=\frac{\frac{100}{3}}{x}+\frac{-20}{x+1}-\frac{\frac{10}{3}}{x+3} f(x)=x3100+x+120x+3310

【例 2】分解以下分式
f ( x ) = x − 2 x ( x + 1 ) 3 f(x)=\frac{x-2}{x(x+1)^3} f(x)=x(x+1)3x2

【解】将分式分解为
f ( x ) = A 1 x + A 2 ( x + 1 ) 3 + A 3 ( x + 1 ) 2 + A 4 x + 1 f(x)=\frac{A_1}{x}+\frac{A_2}{(x+1)^3}+\frac{A_3}{(x+1)^2}+\frac{A_4}{x+1} f(x)=xA1+(x+1)3A2+(x+1)2A3+x+1A4

用留数法求出各项系数
A 1 = [ x − 2 x ( x + 1 ) 3 ⋅ x ] ∣ x = 0 = − 2 A 2 = [ x − 2 x ( x + 1 ) 3 ⋅ ( x + 1 ) 3 ] ∣ x = − 1 = 3 A 3 = 1 ( 3 − 2 ) ! ⋅ d d x [ x − 2 x ( x + 1 ) 3 ⋅ ( x + 1 ) 3 ] ∣ x = − 1 = 2 A 4 = 1 ( 3 − 1 ) ! ⋅ d 2 d x 2 [ x − 2 x ( x + 1 ) 3 ⋅ ( x + 1 ) 3 ] ∣ x = − 1 = 2 \begin{aligned} A_1&=\left[ \frac{x-2}{x(x+1)^3} \cdot x \right] \bigg|_{x=0}=-2 \\ A_2&=\left[ \frac{x-2}{x(x+1)^3} \cdot (x+1)^3 \right] \bigg|_{x=-1}=3 \\ A_3&=\frac{1}{(3-2)!} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{x-2}{x(x+1)^3} \cdot (x+1)^3 \right] \bigg|_{x=-1}=2 \\ A_4&=\frac{1}{(3-1)!} \cdot \frac{\mathrm{d^2}}{\mathrm{d}x^2} \left[ \frac{x-2}{x(x+1)^3} \cdot (x+1)^3 \right] \bigg|_{x=-1}=2 \end{aligned} A1A2A3A4=[x(x+1)3x2x] x=0=2=[x(x+1)3x2(x+1)3] x=1=3=(32)!1dxd[x(x+1)3x2(x+1)3] x=1=2=(31)!1dx2d2[x(x+1)3x2(x+1)3] x=1=2

所以结果为
f ( x ) = − 2 x + 3 ( x + 1 ) 3 + 2 ( x + 1 ) 2 + 2 x + 1 f(x)=-\frac{2}{x}+\frac{3}{(x+1)^3}+\frac{2}{(x+1)^2}+\frac{2}{x+1} f(x)=x2+(x+1)33+(x+1)22+x+12

【例 3】分解以下分式
f ( x ) = 1 x ( 2 x + 3 ) f(x)=\frac{1}{x(2x+3)} f(x)=x(2x+3)1

【解】将分式分解为
f ( x ) = 1 2 x ( x + 3 2 ) = A 1 x + A 2 x + 3 2 \begin{aligned} f(x)=\frac{\frac{1}{2}}{x(x+\frac{3}{2})} = \frac{A_1}{x}+\frac{A_2}{x+\frac{3}{2}} \end{aligned} f(x)=x(x+23)21=xA1+x+23A2

用留数法求出各项系数
A 1 = [ 1 2 x ( x + 3 2 ) ⋅ x ] ∣ x = 0 = 1 3 A 2 = [ 1 2 x ( x + 3 2 ) ⋅ ( x + 3 2 ) ] ∣ x = − 3 2 = − 1 3 \begin{aligned} A_1&=\left[ \frac{\frac{1}{2}}{x(x+\frac{3}{2})} \cdot x \right] \bigg|_{x=0}=\frac{1}{3} \\ A_2&=\left[ \frac{\frac{1}{2}}{x(x+\frac{3}{2})} \cdot (x+\frac{3}{2}) \right] \bigg|_{x=-\frac{3}{2}}=-\frac{1}{3} \end{aligned} A1A2=[x(x+23)21x] x=0=31=[x(x+23)21(x+23)] x=23=31

所以结果为
f ( x ) = 1 3 x − 1 3 x + 3 2 = 1 3 x − 2 3 2 x + 3 f(x)=\frac{\frac{1}{3}}{x}-\frac{\frac{1}{3}}{x+\frac{3}{2}} =\frac{\frac{1}{3}}{x}-\frac{\frac{2}{3}}{2x+3} f(x)=x31x+2331=x312x+332

【例 4】分解以下分式
f ( x ) = 1 x ( 2 x − 1 ) 3 f(x)=\frac{1}{x(2x-1)^3} f(x)=x(2x1)31

【解】将分式分解为
f ( x ) = 1 8 x ( x − 1 2 ) 3 = A 1 x + A 2 ( x − 1 2 ) 3 + A 3 ( x − 1 2 ) 2 + A 4 x − 1 2 f(x)=\frac{\frac{1}{8}}{x(x-\frac{1}{2})^3}=\frac{A_1}{x}+\frac{A_2}{(x-\frac{1}{2})^3}+\frac{A_3}{(x-\frac{1}{2})^2}+\frac{A_4}{x-\frac{1}{2}} f(x)=x(x21)381=xA1+(x21)3A2+(x21)2A3+x21A4

用留数法求出各项系数
A 1 = [ 1 8 x ( x − 1 2 ) 3 ⋅ x ] ∣ x = 0 = − 1 A 2 = [ 1 8 x ( x − 1 2 ) 3 ⋅ ( x − 1 2 ) 3 ] ∣ x = 1 2 = 1 4 A 3 = 1 ( 3 − 2 ) ! ⋅ d d x [ 1 8 x ( x − 1 2 ) 3 ⋅ ( x − 1 2 ) 3 ] ∣ x = 1 2 = − 1 2 A 4 = 1 ( 3 − 1 ) ! ⋅ d 2 d x 2 [ 1 8 x ( x − 1 2 ) 3 ⋅ ( x − 1 2 ) 3 ] ∣ x = 1 2 = 1 \begin{aligned} A_1&=\left[ \frac{\frac{1}{8}}{x(x-\frac{1}{2})^3} \cdot x \right] \bigg|_{x=0}=-1 \\ A_2&=\left[ \frac{\frac{1}{8}}{x(x-\frac{1}{2})^3} \cdot (x-\frac{1}{2})^3 \right] \bigg|_{x=\frac{1}{2}}=\frac{1}{4} \\ A_3&=\frac{1}{(3-2)!} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{\frac{1}{8}}{x(x-\frac{1}{2})^3} \cdot (x-\frac{1}{2})^3 \right] \bigg|_{x=\frac{1}{2}}=-\frac{1}{2} \\ A_4&=\frac{1}{(3-1)!} \cdot \frac{\mathrm{d^2}}{\mathrm{d}x^2} \left[ \frac{\frac{1}{8}}{x(x-\frac{1}{2})^3} \cdot (x-\frac{1}{2})^3 \right] \bigg|_{x=\frac{1}{2}}=1 \end{aligned} A1A2A3A4=[x(x21)381x] x=0=1=[x(x21)381(x21)3] x=21=41=(32)!1dxd[x(x21)381(x21)3] x=21=21=(31)!1dx2d2[x(x21)381(x21)3] x=21=1

所以结果为
f ( x ) = − 1 x + 1 4 ( x − 1 2 ) 3 − 1 2 ( x − 1 2 ) 2 + 1 x − 1 2 = − 1 x + 2 ( 2 x − 1 ) 3 − 2 ( 2 x − 1 ) 2 + 2 2 x − 1 \begin{aligned} f(x)&=-\frac{1}{x}+\frac{\frac{1}{4}}{(x-\frac{1}{2})^3}-\frac{\frac{1}{2}}{(x-\frac{1}{2})^2}+\frac{1}{x-\frac{1}{2}} \\ &=-\frac{1}{x}+\frac{2}{(2x-1)^3}-\frac{2}{(2x-1)^2}+\frac{2}{2x-1} \end{aligned} f(x)=x1+(x21)341(x21)221+x211=x1+(2x1)32(2x1)22+2x12

【例 5】(2019 年真题)分解以下分式

f ( x ) = 3 x + 6 ( x − 1 ) 2 ( x 2 + x + 1 ) f(x) = \frac{3x+6}{(x-1)^2 (x^2+x+1)} f(x)=(x1)2(x2+x+1)3x+6

【解】将分式分解为
f ( x ) = A 1 ( x − 1 ) 2 + A 2 x − 1 + M x + N x 2 + x + 1 f(x) = \frac{A_1}{(x-1)^2} + \frac{A_2}{x-1} + \frac{Mx+N}{x^2+x+1} f(x)=(x1)2A1+x1A2+x2+x+1Mx+N

其中系数 A 1 , A 2 A_1,A_2 A1,A2易求
A 1 = [ 3 x + 6 ( x − 1 ) 2 ( x 2 + x + 1 ) ⋅ ( x − 1 ) 2 ] ∣ x = 1 = 3 A 2 = 1 ( 2 − 1 ) ! ⋅ d d x [ 3 x + 6 ( x − 1 ) 2 ( x 2 + x + 1 ) ⋅ ( x − 1 ) 2 ] ∣ x = 1 = − 2 \begin{aligned} A_1 &= \left[ \frac{3x+6}{(x-1)^2 (x^2+x+1)} \cdot (x-1)^2 \right] \bigg|_{x=1}=3 \\ A_2 &= \frac{1}{(2-1)!} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{3x+6}{(x-1)^2 (x^2+x+1)} \cdot (x-1)^2 \right] \bigg|_{x=1}=-2 \end{aligned} A1A2=[(x1)2(x2+x+1)3x+6(x1)2] x=1=3=(21)!1dxd[(x1)2(x2+x+1)3x+6(x1)2] x=1=2

对于系数 M , N M,N M,N可用以下方法:

先令 x 0 x_0 x0 x 2 + x + 1 = 0 x^2+x+1=0 x2+x+1=0的一个复数根,然后在等式两边同乘 ( x 2 + x + 1 ) (x^2+x+1) (x2+x+1),并代入 x = x 0 x=x_0 x=x0,此时含有 ( x 2 + x + 1 ) (x^2+x+1) (x2+x+1)的项将被消去,即
3 x + 6 ( x − 1 ) 2 ( x 2 + x + 1 ) = A 1 ( x − 1 ) 2 + A 2 x − 1 + M x + N x 2 + x + 1 ⇒ 3 x + 6 ( x − 1 ) 2 = A 1 ( x 2 + x + 1 ) ( x − 1 ) 2 + A 2 ( x 2 + x + 1 ) x − 1 + ( M x + N ) ⇒ 3 x 0 + 6 ( x 0 − 1 ) 2 = M x 0 + N (代入 x = x 0 ,消去含 x 2 + x + 1 的项) \begin{aligned} & \frac{3x+6}{(x-1)^2 (x^2+x+1)} = \frac{A_1}{(x-1)^2} + \frac{A_2}{x-1} + \frac{Mx+N}{x^2+x+1} \\ \Rightarrow & \frac{3x+6}{(x-1)^2} = \frac{A_1(x^2+x+1)}{(x-1)^2} + \frac{A_2(x^2+x+1)}{x-1} + (Mx+N) \\ \Rightarrow & \frac{3x_0+6}{(x_0-1)^2} = Mx_0+N (代入x=x_0,消去含x^2+x+1的项) \end{aligned} (x1)2(x2+x+1)3x+6=(x1)2A1+x1A2+x2+x+1Mx+N(x1)23x+6=(x1)2A1(x2+x+1)+x1A2(x2+x+1)+(Mx+N)(x01)23x0+6=Mx0+N(代入x=x0,消去含x2+x+1的项)

现考虑将上式进一步化简,把二次项 ( x 0 − 1 ) 2 (x_0-1)^2 (x01)2凑成 ( x 2 + x + 1 ) (x^2+x+1) (x2+x+1),即
3 x 0 + 6 ( x 0 − 1 ) 2 = M x 0 + N ⇒ 3 x 0 + 6 x 0 2 − 2 x 0 + 1 = M x 0 + N ⇒ 3 x 0 + 6 ( x 0 2 + x 0 + 1 ) − 3 x 0 = M x 0 + N ⇒ 3 x 0 + 6 − 3 x 0 = M x 0 + N ⇒ − 1 − 2 x 0 = M x 0 + N \begin{aligned} & \frac{3x_0+6}{(x_0-1)^2} = Mx_0+N \\ \Rightarrow & \frac{3x_0+6}{x_0^2-2x_0+1} = Mx_0+N \\ \Rightarrow & \frac{3x_0+6}{(x_0^2+x_0+1)-3x_0} = Mx_0+N \\ \Rightarrow & \frac{3x_0+6}{-3x_0} = Mx_0+N \\ \Rightarrow & -1 - \frac{2}{x_0} = Mx_0+N \end{aligned} (x01)23x0+6=Mx0+Nx022x0+13x0+6=Mx0+N(x02+x0+1)3x03x0+6=Mx0+N3x03x0+6=Mx0+N1x02=Mx0+N

此时将其中一个复数根 x 0 = − 1 2 + 3 2 i x_0=-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i} x0=21+23 i代入等式两端,并对比左右求出系数,即
− 1 − 2 − 1 2 + 3 2 i = M ( − 1 2 + 3 2 i ) + N ⇒ 3 i = 3 2 i M + ( N − M 2 ) (左边分式上下同乘共轭复数) ⇒ M = 2 , N = 1 (对比左右求出系数) \begin{aligned} & -1 - \frac{2}{-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i}} = M(-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i})+N \\ \Rightarrow & \sqrt{3}\mathrm{i} = \frac{\sqrt{3}}{2}\mathrm{i}M + (N-\frac{M}{2}) (左边分式上下同乘共轭复数)\\ \Rightarrow & M=2,N=1(对比左右求出系数) \end{aligned} 121+23 i2=M(21+23 i)+N3 i=23 iM+(N2M)(左边分式上下同乘共轭复数)M=2,N=1(对比左右求出系数)

所以结果为
f ( x ) = 3 ( x − 1 ) 2 − 2 x − 1 + 2 x + 1 x 2 + x + 1 f(x) = \frac{3}{(x-1)^2} - \frac{2}{x-1} + \frac{2x+1}{x^2+x+1} f(x)=(x1)23x12+x2+x+12x+1

可见这种方法大大简化了运算。

【例 6】分解以下分式
f ( x ) = x + 2 ( 2 x + 1 ) ( x 2 + x + 1 ) f(x) = \frac{x+2}{(2x+1)(x^2+x+1)} f(x)=(2x+1)(x2+x+1)x+2

【解】将分式分解为
f ( x ) = 1 2 x + 1 ( x + 1 2 ) ( x 2 + x + 1 ) = A x + 1 2 + M x + N x 2 + x + 1 f(x) = \frac{\frac{1}{2}x+1}{(x+\frac{1}{2})(x^2+x+1)} = \frac{A}{x+\frac{1}{2}} + \frac{Mx+N}{x^2+x+1} f(x)=(x+21)(x2+x+1)21x+1=x+21A+x2+x+1Mx+N

其中系数 A A A易求
A = [ 1 2 x + 1 ( x + 1 2 ) ( x 2 + x + 1 ) ⋅ ( x + 1 2 ) ] ∣ x = − 1 2 = 1 \begin{aligned} A &= \left[ \frac{\frac{1}{2}x+1}{(x+\frac{1}{2})(x^2+x+1)} \cdot (x+\frac{1}{2}) \right] \bigg|_{x=-\frac{1}{2}}=1 \end{aligned} A=[(x+21)(x2+x+1)21x+1(x+21)] x=21=1

对于系数 M , N M,N M,N也可使用例 5 的方法求解,先令 x 0 x_0 x0 x 2 + x + 1 = 0 x^2+x+1=0 x2+x+1=0的一个复数根,然后在等式两边同乘 ( x 2 + x + 1 ) (x^2+x+1) (x2+x+1),并代入 x = x 0 x=x_0 x=x0,此时含有 ( x 2 + x + 1 ) (x^2+x+1) (x2+x+1)的项将被消去,即
1 2 x + 1 ( x + 1 2 ) ( x 2 + x + 1 ) = A x + 1 2 + M x + N x 2 + x + 1 ⇒ 1 2 x + 1 x + 1 2 = A ( x 2 + x + 1 ) x + 1 2 + ( M x + N ) ⇒ 1 2 x 0 + 1 x 0 + 1 2 = A ( x 0 2 + x 0 + 1 ) x 0 + 1 2 + ( M x 0 + N ) ⇒ 1 2 x 0 + 1 x 0 + 1 2 = M x 0 + N ⇒ x 0 + 2 2 x 0 + 1 = M x 0 + N \begin{aligned} & \frac{\frac{1}{2}x+1}{(x+\frac{1}{2})(x^2+x+1)} = \frac{A}{x+\frac{1}{2}} + \frac{Mx+N}{x^2+x+1} \\ \Rightarrow & \frac{\frac{1}{2}x+1}{x+\frac{1}{2}} = \frac{A(x^2+x+1)}{x+\frac{1}{2}} + (Mx+N) \\ \Rightarrow & \frac{\frac{1}{2}x_0+1}{x_0+\frac{1}{2}} = \frac{A(x_0^2+x_0+1)}{x_0+\frac{1}{2}} + (Mx_0+N) \\ \Rightarrow & \frac{\frac{1}{2}x_0+1}{x_0+\frac{1}{2}} = Mx_0+N \\ \Rightarrow & \frac{x_0+2}{2x_0+1} = Mx_0+N \end{aligned} (x+21)(x2+x+1)21x+1=x+21A+x2+x+1Mx+Nx+2121x+1=x+21A(x2+x+1)+(Mx+N)x0+2121x0+1=x0+21A(x02+x0+1)+(Mx0+N)x0+2121x0+1=Mx0+N2x0+1x0+2=Mx0+N

现考虑将等式左边凑出 ( x 2 + x + 1 ) (x^2+x+1) (x2+x+1),但是分子、分母均为一次项,凑不出二次项出来,所以分子、分母需要乘以一个形如 ( A x + B ) (Ax+B) (Ax+B)的项,接着再凑出 ( x 2 + x + 1 ) (x^2+x+1) (x2+x+1)

如何确定这个 ( A x + B ) (Ax+B) (Ax+B)的项呢?使用长除法,用 ( x 2 + x + 1 ) (x^2+x+1) (x2+x+1)去除以分母 2 x + 1 2x+1 2x+1,得到: x 2 + x + 1 = ( 2 x + 1 ) ( 1 2 x + 1 4 ) + 3 4 x^2+x+1 = (2x+1)(\frac{1}{2}x+\frac{1}{4}) + \frac{3}{4} x2+x+1=(2x+1)(21x+41)+43,于是等式左边上下同乘 ( 1 2 x + 1 4 ) (\frac{1}{2}x+\frac{1}{4}) (21x+41)得:
x 0 + 2 2 x 0 + 1 = M x 0 + N ⇒ ( x 0 + 2 ) ( 1 2 x 0 + 1 4 ) ( 2 x 0 + 1 ) ( 1 2 x 0 + 1 4 ) = M x 0 + N ⇒ 1 2 x 0 2 + 5 4 x 0 + 1 2 ( x 0 2 + x 0 + 1 ) − 3 4 = M x 0 + N ⇒ 1 2 ( x 0 2 + x 0 + 1 ) + 3 4 x 0 ( x 0 2 + x 0 + 1 ) − 3 4 = M x 0 + N (等式左边的分子也可凑 x 2 + x + 1 ) ⇒ 3 4 x 0 − 3 4 = M x 0 + N ⇒ − x 0 = M x 0 + N ⇒ M = − 1 , N = 0 \begin{aligned} & \frac{x_0+2}{2x_0+1} = Mx_0+N \\ \Rightarrow & \frac{(x_0+2)(\frac{1}{2}x_0+\frac{1}{4})}{(2x_0+1)(\frac{1}{2}x_0+\frac{1}{4})} = Mx_0+N \\ \Rightarrow & \frac{\frac{1}{2}x_0^2+\frac{5}{4}x_0+\frac{1}{2}}{(x_0^2+x_0+1)-\frac{3}{4}} = Mx_0+N \\ \Rightarrow & \frac{\frac{1}{2}(x_0^2+x_0+1)+\frac{3}{4}x_0}{(x_0^2+x_0+1)-\frac{3}{4}} = Mx_0+N (等式左边的分子也可凑x^2+x+1)\\ \Rightarrow & \frac{\frac{3}{4}x_0}{-\frac{3}{4}} = Mx_0+N \\ \Rightarrow & -x_0 = Mx_0+N \\ \Rightarrow & M=-1,N=0 \end{aligned} 2x0+1x0+2=Mx0+N(2x0+1)(21x0+41)(x0+2)(21x0+41)=Mx0+N(x02+x0+1)4321x02+45x0+21=Mx0+N(x02+x0+1)4321(x02+x0+1)+43x0=Mx0+N(等式左边的分子也可凑x2+x+14343x0=Mx0+Nx0=Mx0+NM=1,N=0

当然,用 ( x 2 + x + 1 ) (x^2+x+1) (x2+x+1)去除以分子 x + 2 x+2 x+2也是可以的,得到: x 2 + x + 1 = ( x + 2 ) ( x − 1 ) + 3 x^2+x+1 = (x+2)(x-1)+3 x2+x+1=(x+2)(x1)+3,于是等式左边上下同乘 ( x − 1 ) (x-1) (x1)得:
x 0 + 2 2 x 0 + 1 = M x 0 + N ⇒ ( x 0 + 2 ) ( x 0 − 1 ) ( 2 x 0 + 1 ) ( x 0 − 1 ) = M x 0 + N ⇒ ( x 0 2 + x 0 + 1 ) − 3 2 x 0 2 − x 0 − 1 = M x 0 + N ⇒ ( x 0 2 + x 0 + 1 ) − 3 2 ( x 0 2 + x 0 + 1 ) − 3 x 0 − 3 = M x 0 + N (等式左边的分母也可凑 x 2 + x + 1 ) ⇒ 1 x 0 + 1 = M x 0 + N \begin{aligned} & \frac{x_0+2}{2x_0+1} = Mx_0+N \\ \Rightarrow & \frac{(x_0+2)(x_0-1)}{(2x_0+1)(x_0-1)} = Mx_0+N \\ \Rightarrow & \frac{(x_0^2+x_0+1)-3}{2x_0^2-x_0-1} = Mx_0+N \\ \Rightarrow & \frac{(x_0^2+x_0+1)-3}{2(x_0^2+x_0+1)-3x_0-3} = Mx_0+N(等式左边的分母也可凑x^2+x+1)\\ \Rightarrow & \frac{1}{x_0+1} = Mx_0+N \\ \end{aligned} 2x0+1x0+2=Mx0+N(2x0+1)(x01)(x0+2)(x01)=Mx0+N2x02x01(x02+x0+1)3=Mx0+N2(x02+x0+1)3x03(x02+x0+1)3=Mx0+N(等式左边的分母也可凑x2+x+1x0+11=Mx0+N

此时将其中一个复数根 x 0 = − 1 2 + 3 2 i x_0=-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i} x0=21+23 i代入等式两端,并对比左右求出系数,即
1 1 2 + 3 2 i = M ( − 1 2 + 3 2 i ) + N ⇒ 1 2 − 3 2 i = 3 2 i M + ( N − M 2 ) (左边分式上下同乘共轭复数) ⇒ M = − 1 , N = 0 (对比左右求出系数) \begin{aligned} & \frac{1}{\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i}} = M(-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i})+N \\ \Rightarrow & \frac{1}{2}-\frac{\sqrt{3}}{2}\mathrm{i} = \frac{\sqrt{3}}{2}\mathrm{i}M + (N-\frac{M}{2})(左边分式上下同乘共轭复数)\\ \Rightarrow & M=-1,N=0(对比左右求出系数) \end{aligned} 21+23 i1=M(21+23 i)+N2123 i=23 iM+(N2M)(左边分式上下同乘共轭复数)M=1,N=0(对比左右求出系数)

对比上面两种方法,可见第一种方法更简便。

所以结果为
f ( x ) = 2 2 x + 1 − x x 2 + x + 1 f(x) = \frac{2}{2x+1} - \frac{x}{x^2+x+1} f(x)=2x+12x2+x+1x

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值