1. 基本假设
- 大气是静止或准静止的,即水平速度变化对垂直运动影响可以忽略。
- 大气中的气体可以近似为理想气体。
在这种情况下,垂直方向上的力主要有两个:
- 重力 (
F
gravity
F_{\text{gravity}}
Fgravity),作用于每单位体积的空气,大小为:
F gravity = − ρ g F_{\text{gravity}} = -\rho g Fgravity=−ρg - 压力梯度力(
F
pressure
F_{\text{pressure}}
Fpressure),在垂直方向上对每单位体积的空气施加向上的作用力,其表达式为:
F pressure = − ∂ p ∂ z F_{\text{pressure}} = -\frac{\partial p}{\partial z} Fpressure=−∂z∂p
2. 力平衡方程
−
∂
p
∂
z
=
ρ
g
-\frac{\partial p}{\partial z} = \rho g
−∂z∂p=ρg
我们将理想气体方程代入静力平衡方程,得到:
−
∂
p
∂
z
=
p
R
T
g
-\frac{\partial p}{\partial z} = \frac{p}{RT} g
−∂z∂p=RTpg
如果我们假设温度 ( T ) 是一个常数(或在一定范围内变化很小),则可以对上面的方程进行积分。
将方程重写为:
1
p
∂
p
∂
z
=
−
g
R
T
\frac{1}{p} \frac{\partial p}{\partial z} = -\frac{g}{RT}
p1∂z∂p=−RTg
两边同时积分:
∫
p
0
p
1
p
d
p
=
−
g
R
T
∫
0
z
d
z
\int_{p_0}^{p} \frac{1}{p} \, dp = -\frac{g}{RT} \int_{0}^{z} dz
∫p0pp1dp=−RTg∫0zdz
积分得到:
ln
(
p
p
0
)
=
−
g
z
R
T
\ln\left(\frac{p}{p_0}\right) = -\frac{gz}{RT}
ln(p0p)=−RTgz
进一步化简:
p
=
p
0
e
−
g
z
/
R
T
=
p
0
e
z
/
H
p = p_0 e^{-gz/RT}= p_0 e^{z/H}
p=p0e−gz/RT=p0ez/H
其中,(
p
0
p_0
p0 ) 是参考高度(通常为海平面)的气压。这表明在静力平衡下,大气压力随着高度的增加以指数方式衰减。