静力学平衡推导

1. 基本假设

 - 大气是静止或准静止的,即水平速度变化对垂直运动影响可以忽略。
 - 大气中的气体可以近似为理想气体。

在这种情况下,垂直方向上的力主要有两个:

  • 重力 ( F gravity F_{\text{gravity}} Fgravity),作用于每单位体积的空气,大小为:
    F gravity = − ρ g F_{\text{gravity}} = -\rho g Fgravity=ρg
  • 压力梯度力( F pressure F_{\text{pressure}} Fpressure),在垂直方向上对每单位体积的空气施加向上的作用力,其表达式为:
    F pressure = − ∂ p ∂ z F_{\text{pressure}} = -\frac{\partial p}{\partial z} Fpressure=zp

2. 力平衡方程

− ∂ p ∂ z = ρ g -\frac{\partial p}{\partial z} = \rho g zp=ρg
静力平衡
我们将理想气体方程代入静力平衡方程,得到:
− ∂ p ∂ z = p R T g -\frac{\partial p}{\partial z} = \frac{p}{RT} g zp=RTpg
如果我们假设温度 ( T ) 是一个常数(或在一定范围内变化很小),则可以对上面的方程进行积分。
将方程重写为:
1 p ∂ p ∂ z = − g R T \frac{1}{p} \frac{\partial p}{\partial z} = -\frac{g}{RT} p1zp=RTg
两边同时积分:
∫ p 0 p 1 p   d p = − g R T ∫ 0 z d z \int_{p_0}^{p} \frac{1}{p} \, dp = -\frac{g}{RT} \int_{0}^{z} dz p0pp1dp=RTg0zdz
积分得到:
ln ⁡ ( p p 0 ) = − g z R T \ln\left(\frac{p}{p_0}\right) = -\frac{gz}{RT} ln(p0p)=RTgz
进一步化简:
p = p 0 e − g z / R T = p 0 e z / H p = p_0 e^{-gz/RT}= p_0 e^{z/H} p=p0egz/RT=p0ez/H
其中,( p 0 p_0 p0 ) 是参考高度(通常为海平面)的气压。这表明在静力平衡下,大气压力随着高度的增加以指数方式衰减。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值