【数理统计】单因素方差分析

0 目的(意义)

方差分析是一种检验多组样本均值差异的统计方法。

又称变异数分析或F检验,是一种用于检验两个或两个以上样本均值差异显著性的统计方法。

1基础知识

1.1因素和水平
  • 因素,又称因子,是在方差分析中待检验的自变量。
  • 水平,又称为处理,是因素的每个取值。
1.2 单因素方差分析与双因素方差分析

前者是一种仅讨论单一因素对试验结果有无显著影响的分析,后者为两种因素。

1.3 离差平方和(SST、SSE、SSA)

统计学中一般用离差平方和来表示误差。

  • SST(sum of squares for total)
    • 反映全部观测数据的误差,称为总误差。
  • SSE(sum of squares for error)
    • 由随机因素产生的误差称为随机误差,或组内误差。
  • SSA(sum of squares for factor A)
    • 不同水平之间的数据误差称为组建误差。

2 分析步骤

2.1 提出假设

H0:μ1=μ2=…=μk 自变量对因变量没有显著影响

H1:μ1,μ2,…,μk不全相等 自变量对因变量存在显著影响

2.2 构造检验统计量

在这里插入图片描述

2.3 均方

各离差平方和取决于实验结果数目的多少,为了便于比较,我们采用均方的形式进行标准化,以消除实现结果数量的影响。

均方的值为离差平方和对应的自由度df之比。
S S A 的 均 方 为 M S A = S S A k − 1 S S E 的 均 方 为 M S E = S S E n t − k SSA的均方为MSA=\frac{SSA}{k-1}\\ SSE的均方为MSE=\frac{SSE}{n_{t}-k} SSAMSA=k1SSASSEMSE=ntkSSE
如过组间离差平方和(SSA)远远大于组内离差平方和(SSE),即意味着各水平之间既存在随机误差也存在系统误差,应拒绝H0,表明自变量对因变量存在显著影响;反之,不存在显著影响。

构建统计量
F = M S A M S E 服 从 F ( k − 1 , n t − k ) F=\frac{MSA}{MSE}服从F(k-1,n_t-k) F=MSEMSAF(k1,ntk)

2.4 统计决策
  • 临界值法
  • p值法

总结

通常解题时会将上述过程列在一张方差分析表内形式如下:

方差来源离差平方和SS自由度df均方MS检验统计量Fp值
因素ASSAk-1MSAMSA/MSE
随机eSSEn_t-kMSEXX
总和SSTn_t-1XXX
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

火柴先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值