强化学习—DQN算法原理详解

强化学习—DQN算法原理详解

一、 概述

强化学习算法可以分为三大类:value based, policy based 和 actor critic。常见的是以DQN为代表的value based算法,这种算法中只有一个值函数网络,没有policy网络,以及以DDPG,TRPO为代表的actor-critic算法,这种算法中既有值函数网络,又有policy网络。

说到DQN中有值函数网络,这里简单介绍一下强化学习中的一个概念,叫值函数近似。在基本概念这篇中有讲过,一个state action pair (s,a)(s,a)对应一个值函数Q(s,a)Q(s,a)。理论上对于任意的(s,a)(s,a)我们都可以由公式求出它的值函数,即用一个查询表lookup table来表示值函数。但是当state或action的个数过多时,分别去求每一个值函数会很慢。因此我们用函数近似的方式去估计值函数:^Q(s,a,w)≈Qπ(s,a)Q^(s,a,w)≈Qπ(s,a)

这样,对于未出现的state action也可以估计值函数。
至于近似函数,DQN中用的是神经网络,当然如果环境比较简单的话用线性函数来近似也是可以的。

DQN算法原文链接: 2013版(arxiv) 2015版(nature)

二、算法原理

基本概念中有说过,强化学习是一个反复迭代的过程,每一次迭代要解决两个问题:给定一个策略求值函数,和根据值函数来更新策略。

上面说过DQN使用神经网络来近似值函数,即神经网络的输入是state ss,输出是Q(s,a),∀a∈AQ(s,a),∀a∈A (action space)。通过神经网络计算出值函数后,DQN使用ϵ−greedyϵ−greedy策略来输出action(第四部分中介绍)。值函数网络与ϵ−greedyϵ−greedy策略之间的联系是这样的:首先环境会给出一个obs,智能体根据值函数网络得到关于这个obs的所有Q(s,a)Q(s,a),然后利用ϵ−greedyϵ−greedy选择action并做出决策,环境接收到此action后会给出一个奖励Rew及下一个obs。这是一个step。此时我们根据Rew去更新值函数网络的参数。接着进入下一个step。如此循环下去,直到我们训练出了一个好的值函数网络。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值