两个个向量组向量数目相对大小重要定理

向量组线性相关性重要定理:

定理1.2.3:设V为数域P上的线性空间,如果V中向量组
α 1 , α 2 , … , α r \alpha_1,\alpha_2,\dots,\alpha_r α1,α2,,αr
线性无关,并且可由向量组
β 1 , β 2 , … , β s \beta_1,\beta_2,\dots,\beta_s β1,β2,,βs
线性表示,则 r ≤ s r \le s rs
本人对定理的理解: 如果一组向量组A是线性无关组,说明它内部向量最有效的,性价比最高的。现在你来了另外一组向量组B,不清楚它是线性相关组还是线性无关组。最好的情况下B也是线性无关组,此时它也是干货满满,那么A,B各自所含向量数目相等。如果B是线性相关组,说明内部至少有一个向量可以由剩余向量表示,那么它除了干货部分,也有水货,数目肯定会比A多。

证明的思路: 把向量组 { β 1 , β 2 , … , β s } \{\beta_1,\beta_2,\dots,\beta_s\} {β1,β2,,βs}线性表示向量组 { α 1 , α 2 , … , α r } \{\alpha_1,\alpha_2,\dots,\alpha_r\} {α1,α2,,αr}的式子写出来。利用向量组 { α 1 , α 2 , … , α r } \{\alpha_1,\alpha_2,\dots,\alpha_r\} {α1,α2,,αr}线性无关的条件齐次线性方程组有非零解(本质上有基础解系,必定有非零解)的判定条件(这个条件是信息量最小的判定条件了,只需要系数矩阵的行列数目)推出矛盾。当然,借助“算两次”的思想从矩阵行、列两个方向各自求和也是很重要的一个点。

证明:
采用反证法。假设 r > s r\gt s r>s
因为向量组 { α 1 , α 2 , … , α r } \{\alpha_1,\alpha_2,\dots,\alpha_r\} {α1,α2,,αr}可以由向量组 { β 1 , β 2 , … , β s } \{\beta_1,\beta_2,\dots,\beta_s\} {β1,β2,,βs}线性表示,即
α i = ∑ j = 1 s k j i β j , i = 1 , 2 , … , r \alpha_{i}=\sum_{j=1}^{s}k_{ji}\beta_{j},\qquad i=1,2,\dots,r αi=j=1skjiβj,i=1,2,,r
写出式子
x 1 α 1 + x 2 α 2 + , ⋯ + x r α r = ∑ i = 1 r x i ∑ j = 1 s k j i β j = ∑ j = 1 s β j ∑ i = 1 r k j i x i (1) \begin{aligned}x_{1} \alpha_1+x_{2}\alpha_2+,\dots+x_{r}\alpha_r=\sum_{i=1}^{r}x_{i}\sum_{j=1}^{s}k_{ji}\beta_{j}\\= \sum_{j=1}^{s}\beta_{j}\sum_{i=1}^{r}k_{ji}x_{i} \tag{1} \end{aligned} x1α1+x2α2+,+xrαr=i=1rxij=1skjiβj=j=1sβji=1rkjixi(1)
上述求和符号交换等式为什么成立请看后文附录。

现在想要推出向量组 { α 1 , α 2 , … , α r } \{\alpha_1,\alpha_2,\dots,\alpha_r\} {α1,α2,,αr}线性相关,从而推出矛盾。如果 { α 1 , α 2 , … , α r } = 0 \{\alpha_1,\alpha_2,\dots,\alpha_r\}=0 {α1,α2,,αr}=0 成立,同时 x 1 , x 2 , … , x r x_{1},x_{2},\dots,x{r} x1,x2,,xr不全为0成立即可。下面推出这个条件。

根据 ∑ j = 1 s ∑ i = 1 r k j i x i (2) \sum_{j=1}^{s}\sum_{i=1}^{r}k_{ji}x_{i} \tag{2} j=1si=1rkjixi(2)
反向构造齐次线性方程组:
k 11 x 1 + k 12 x 2 + k 13 x 3 + , … , + k 1 r x r = 0 k 21 x 1 + k 22 x 2 + k 23 x 3 + , … , + k 2 r x r = 0 ⋮ k s 1 x 1 + k s 2 x 2 + k s 3 x 3 + , … , + k s r x r = 0 (3) k_{11}x_{1}+k_{12}x_{2}+k_{13}x_{3}+,\dots,+k_{1r}x_{r}=0\\ k_{21}x_{1}+k_{22}x_{2}+k_{23}x_{3}+,\dots,+k_{2r}x_{r}=0\\ \vdots \\ k_{s1}x_{1}+k_{s2}x_{2}+k_{s3}x_{3}+,\dots,+k_{sr}x_{r}=0 \tag{3} k11x1+k12x2+k13x3+,,+k1rxr=0k21x1+k22x2+k23x3+,,+k2rxr=0ks1x1+ks2x2+ks3x3+,,+ksrxr=0(3)
x 1 , x 2 , … , x r x_{1},x_{2},\dots,x_{r} x1,x2,,xr 视作未知数,故齐次线性方程组(3)有 r r r个未知数, s s s个方程,由假设 r > s r \gt s r>s, 立刻得到齐次线性方程组(3)有无穷解,有非零解。立刻得到式(2)可以为0且
x i i = 1 , 2 , 3 … , r x_{i}\qquad i=1,2,3\dots,r xii=1,2,3,r
不全为0,那么
∑ j = 1 s β j ∑ i = 1 r k j i x i = 0 ⃗ \sum_{j=1}^{s}\beta_{j}\sum_{i=1}^{r}k_{ji}x_{i}=\vec{0} j=1sβji=1rkjixi=0
注: 因为对于每个 j j j, ∑ i = 1 r k j i x i = 0 \sum_{i=1}^{r}k_{ji}x_{i}=0 i=1rkjixi=0。对一个数量乘积序列求和,每个系数都是0,求和一定是零向量。
立即有向量组
α 1 , α 2 , … , α r \alpha_1,\alpha_2,\dots,\alpha_r α1,α2,,αr
线性相关,矛盾。故假设不成立。证毕。

附录:

[ k 11 x 1 β 1 k 12 x 2 β 1 … k 1 r x r β 1 k 21 x 1 β 2 k 22 x 2 β 2 … k 2 r x r β 2 ⋮ k s 1 x 1 β s k s 2 x 2 β s … k s r x r β s ] \begin{gathered} \begin{bmatrix} k_{11}x_{1}\beta_{1} & k_{12}x_{2}\beta_{1} \dots &k_{1r}x_{r}\beta_{1} \\ k_{21}x_{1}\beta_{2} & k_{22}x_{2}\beta_{2} \dots &k_{2r}x_{r}\beta_{2} \\ \vdots\\ k_{s1}x_{1}\beta_{s} & k_{s2}x_{2}\beta_{s} \dots &k_{sr}x_{r}\beta_{s}\\ \end{bmatrix} \end{gathered} k11x1β1k21x1β2ks1x1βsk12x2β1k22x2β2ks2x2βsk1rxrβ1k2rxrβ2ksrxrβs
如果对上述矩阵从左到右求和从上到下求和则是:
∑ j = 1 s β j ∑ i = 1 r k j i x i \sum_{j=1}^{s}\beta_{j}\sum_{i=1}^{r}k_{ji}x_{i} j=1sβji=1rkjixi
反之,则是:
∑ i = 1 r x i ∑ j = 1 s k j i β j \sum_{i=1}^{r}x_{i}\sum_{j=1}^{s}k_{ji}\beta_{j} i=1rxij=1skjiβj

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

培之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值