e x = 1 + x 1 ! + x 2 2 ! + ⋯ + x n n ! + O ( x n ) sin x = x − x 3 3 ! + x 5 5 ! + ⋯ + ( − 1 ) m − 1 x 2 m − 1 ( 2 m − 1 ) ! + O ( x 2 m ) cos x = 1 − x 2 2 ! + x 4 4 ! + ⋯ + ( − 1 ) m x 2 m ( 2 m ) ! + O ( x 2 m + 1 ) ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) 1 ∗ 2 ∗ ⋯ n + O ( x ( n ) ) ln ( 1 + x ) = x − x 2 2 + x 3 3 + ⋯ + ( − 1 ) n − 1 x n n + O ( x n ) arctan x = x − x 3 3 + x 5 5 − ⋯ + ( − 1 ) m − 1 x 2 m − 1 2 m − 1 + O ( x 2 m ) tan x = x + x 3 3 + O ( x 4 ) arcsin x = x + x 3 6 + 3 x 4 8 + O ( x 4 ) arccos x = π − ( x + x 3 6 + o ( x 3 ) ) \begin{aligned} &e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+{\cdots}+\frac{x^{n}}{n!}+O(x^n)\\ &\sin{x}=x-\frac{x^3}{3!}+\frac{x^5}{5!}+{\cdots}+(-1)^{m-1}\frac{x^{2m-1}}{(2m-1)!}+O(x^{2m})\\ &\cos{x}=1-\frac{x^2}{2!}+\frac{x^4}{4!}+{\cdots}+(-1)^{m}\frac{x^{2m}}{(2m)!}+O(x^{2m+1})\\ &(1+x)^m=1+mx+{\frac{m(m-1)}{2!}}x^2+{\cdots}+\frac{m(m-1){\cdots}(m-n+1)}{1*2*\cdots{n}}+O(x^(n))\\ &\ln{(1+x)}=x-\frac{x^2}{2}+\frac{x^3}{3}+{\cdots}+(-1)^{n-1}{\frac{x^{n}}{n}}+O(x^n) \\ &\arctan{x}=x-\frac{x^3}{3}+\frac{x^5}{5}-{\cdots}+(-1)^{m-1}{\frac{x^{2m-1}}{2m-1}}+O(x^{2m})\\ &\tan{x}=x+\frac{x^3}{3}+O(x^4)\\ &\arcsin{x}=x+\frac{x^3}{6}+\frac{3x^4}{8}+O(x^{4})\\ &\arccos{x}=\pi-(x+\frac{x^3}{6}+o(x^3)) \end{aligned} ex=1+1!x+2!x2+⋯+n!xn+O(xn)sinx=x−3!x3+5!x5+⋯+(−1)m−1(2m−1)!x2m−1+O(x2m)cosx=1−2!x2+4!x4+⋯+(−1)m(2m)!x2m+O(x2m+1)(1+x)m=1+mx+2!m(m−1)x2+⋯+1∗2∗⋯nm(m−1)⋯(m−n+1)+O(x(n))ln(1+x)=x−2x2+3x3+⋯+(−1)n−1nxn+O(xn)arctanx=x−3x3+5x5−⋯+(−1)m−12m−1x2m−1+O(x2m)tanx=x+3x3+O(x4)arcsinx=x+6x3+83x4+O(x4)arccosx=π−(x+6x3+o(x3))
考研数学:常见的的泰勒公式
最新推荐文章于 2024-07-23 11:47:04 发布