曲线积分可以分为两类:
- 对弧长的曲线积分
- 对坐标的曲线积分
我们分别介绍
对弧长的曲线积分
对弧长曲线积分的现实(物理)含义:弧长 × 物理量 = 对弧长曲线积分值;
举例说明:
- 计算曲型物体质量:弧长 × 线密度 = 曲型物体质量
对弧长曲线积分的定义式:
对弧长的曲线积分的计算法:
将弧转换为参数方程形式:
对坐标的曲线积分
对坐标曲线积分的现实(物理)含义:弧长 × 矢量 = 对坐标曲线积分值;
举例说明:
- 力沿弧形路径前进所做的功:路径弧长 × 力 = 对坐标积分值
由对坐标曲线积分的物理含义可以看出,因为这个曲线积分是对矢量的积分,通常情况下需要借助坐标系来把矢量分解为 x x 、两个方向,所以叫做对坐标的曲线积分。
对坐标曲线积分的定义式:
对坐标曲线积分的计算法:
①将弧
L
L
转换为参数方程形式:
将参数方程带入定义式可得:
②若给出L的参数方程为
y=ϕ(x)
y
=
ϕ
(
x
)
或
x=ζ(y)
x
=
ζ
(
y
)
。
例如:
1、当给出
y=ϕ(x)
y
=
ϕ
(
x
)
,则有:
2、当给出 x=ϕ(y) x = ϕ ( y ) ,则有:
要注意的是:在对坐标的曲线积分中,积分下限对应的是L的起点的x/y坐标,积分上限对应的是L的终点的x/y坐标
两类曲线积分之间的联系
在平面曲线弧L上,两类曲线积分有如下关系:
cosα、cosβ cos α 、 cos β 为有向弧L在点 (ϕ(t),ζ(t)),即(x,y) ( ϕ ( t ) , ζ ( t ) ) , 即 ( x , y ) 上的切向量分别对 x、y x 、 y 方向上的方向余弦