曲线积分

曲线积分可以分为两类:

  1. 对弧长的曲线积分
  2. 对坐标的曲线积分

我们分别介绍

对弧长的曲线积分

对弧长曲线积分的现实(物理)含义:弧长 × 物理量 = 对弧长曲线积分值;
举例说明:

  • 计算曲型物体质量:弧长 × 线密度 = 曲型物体质量

对弧长曲线积分的定义式:

Lf(x,y)ds ∫ L f ( x , y ) d s
其中 f(x,y) f ( x , y ) 叫做被积函数; L L 叫做积分弧段,即被积分的弧长区域

对弧长的曲线积分的计算法:
将弧L转换为参数方程形式:

{x=ϕ(t)y=ζ(t),(αtβ) { x = ϕ ( t ) y = ζ ( t ) , ( α ⩽ t ⩽ β )
带入定义式可得:
Lf(x,y)ds=βαf[ϕ(t),ζ(i)][ϕ(t)]2+[ζ(t)]2dt ∫ L f ( x , y ) d s = ∫ α β f [ ϕ ( t ) , ζ ( i ) ] [ ϕ ′ ( t ) ] 2 + [ ζ ′ ( t ) ] 2 d t
需要注意的是:在对弧长的曲线积分中, 积分下限一定要小于积分上限

对坐标的曲线积分

对坐标曲线积分的现实(物理)含义:弧长 × 矢量 = 对坐标曲线积分值;
举例说明:

  • 力沿弧形路径前进所做的功:路径弧长 × 力 = 对坐标积分值

由对坐标曲线积分的物理含义可以看出,因为这个曲线积分是对矢量的积分,通常情况下需要借助坐标系来把矢量分解为 x x y两个方向,所以叫做对坐标的曲线积分。

对坐标曲线积分的定义式:

X:LP(x,y)dx X 方 向 上 力 做 的 功 : ∫ L P ( x , y ) d x
Y:LQ(x,y)dy Y 方 向 上 力 做 的 功 : ∫ L Q ( x , y ) d y
:LF(x,y)dr=LP(x,y)dx+Q(x,y)dy 合 力 做 的 功 : ∫ L F ( x , y ) d r = ∫ L P ( x , y ) d x + Q ( x , y ) d y

对坐标曲线积分的计算法:
①将弧 L L 转换为参数方程形式:

{x=ϕ(t)y=ζ(t),(αtβ)
当参数 t t 单调地由α变到 β β 时,力的作用点由起点逐渐变到终点
将参数方程带入定义式可得:

LP(x,y)dx+Q(x,y)dy=βα{P[ϕ(t),ζ(t)]ϕ(t)+Q[ϕ(t),ζ(t)]ζ(t)}dt ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ α β { P [ ϕ ( t ) , ζ ( t ) ] ϕ ′ ( t ) + Q [ ϕ ( t ) , ζ ( t ) ] ζ ′ ( t ) } d t

②若给出L的参数方程为 y=ϕ(x) y = ϕ ( x ) x=ζ(y) x = ζ ( y )
例如:
1、当给出 y=ϕ(x) y = ϕ ( x ) ,则有:

LP(x,y)dx+Q(x,y)dy=ba{P[x,ϕ(x)]+Q[x,ϕ(x)]ϕ(x)}dx ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a b { P [ x , ϕ ( x ) ] + Q [ x , ϕ ( x ) ] ϕ ′ ( x ) } d x
其中下限 a a 表示L的起点对应的 x x 坐标,上限b表示 L L 的终点对应的x坐标
2、当给出 x=ϕ(y) x = ϕ ( y ) ,则有:
LP(x,y)dx+Q(x,y)dy=dc{P[ζ(y),y]ζ(y)+Q[ζ(y),y]}dy ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ c d { P [ ζ ( y ) , y ] ζ ′ ( y ) + Q [ ζ ( y ) , y ] } d y
其中下限 c c 表示L的起点对应的 y y 坐标,上限d表示 L L 的终点对应的y坐标

要注意的是:在对坐标的曲线积分中,积分下限对应的是L的起点的x/y坐标,积分上限对应的是L的终点的x/y坐标

两类曲线积分之间的联系

在平面曲线弧L上,两类曲线积分有如下关系:

L(Pcosα+Qcosβ)ds=LPdx+Qdy ∫ L ( P cos ⁡ α + Q cos ⁡ β ) d s = ∫ L P d x + Q d y

cosαcosβ cos ⁡ α 、 cos ⁡ β 为有向弧L在点 (ϕ(t),ζ(t)),(x,y) ( ϕ ( t ) , ζ ( t ) ) , 即 ( x , y ) 上的切向量分别对 xy x 、 y 方向上的方向余弦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值