【ML】K近邻算法 KNN (K-nearest Neighbors)

Intro

k-NN 是最简单的 ML 算法,就是把训练数据展开到特征空间上,再扔进来一个测试样本 x x ,给 x 找到距离最近的 k k 个samples,在这 k 个 samples 中哪个 class c l a s s 出现的次数最多, x x 就标记成哪个 class . 一句话形容就是 : 近朱者赤近墨者黑.

这里写图片描述

Example of k-NN classification. The test sample (green circle) should be classified either to the first class of blue squares or to the second class of red triangles. If k = 3 (solid line circle) it is assigned to the second class because there are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line circle) it is assigned to the first class (3 squares vs. 2 triangles inside the outer circle). – Wikipedia

Tags 标签

  • non-parametric method, 非参数方法
  • instance-based learning / lazy learning

Hyper parameter – K

就一个超参数, k k <script type="math/tex" id="MathJax-Element-8">k</script>.

距离 distance

另一个重要的影响因素就是对距离的定义了。最常用的就是欧氏距离了,次常用的还有 街区距离,马氏距离等。更多距离,看这里 :常用的距离度量


Ref

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值