1、项目介绍
本项目的目标是通过分析员工的各项工作指标,识别员工是否会离职。我们利用了一系列的数据分析和可视化技术,结合决策树模型,对员工的离职情况进行了预测和分析。
1.1 项目简介
我们使用了一个员工离职数据集,该数据集包含了员工的工作时长、满意度、收入水平、部门等信息。通过数据清洗和特征工程,我们将数据集整理为适合分析和建模的形式。随后,我们采用了可视化工具对数据进行了多方面的探索性分析,揭示了不同变量之间的关系。最后,我们构建并训练了一个决策树模型,对员工是否会离职进行了预测,并对模型的性能进行了评估和可视化展示。
1.2 技术栈
-
编程语言:Python
-
数据分析与可视化:Pandas, NumPy, Matplotlib, Seaborn
-
机器学习:Scikit-learn, Decision Tree
-
决策树可视化:pydotplus, dtreeviz
1.3 实现功能
-
数据加载和预处理:
-
读取CSV文件并加载数据
-
检查数据集的基本信息,进行数据清洗和缺失值处理
-
-
数据可视化:
-
使用直方图、散点图、核密度图等对数据进行可视化展示,分析工作时长、满意度、收入水平等因素与员工离职的关系
-
-
决策树建模:
-
构建决策树模型,对员工离职进行预测
-
将数据集划分为训练集和测试集,训练模型并进行预测
-
计算模型的预测准确率,评估模型性能
-
-
决策树可视化:
-
使用pydotplus和dtreeviz对决策树进行可视化展示,使决策树的结构和决策过程更加直观
-