葡萄采摘论文阅读–无损采摘之葡萄包围体求解
文章简历
题目:基于双目立体视觉的葡萄采摘防碰空间包围体求解与定位
作者:罗陆锋;邹湘军;叶敏;杨自尚;张丛;朱娜;王成琳 单位:华南农业大学
来源:农业工程学报
发表时间:2016-04-23
知网被引:52 下载量:787
文章分析
摘要
摘要: 无损收获是采摘机器人的研究难点之一,葡萄采摘过程中容易因机械碰撞而损伤果实,为便于机器人规划出免碰撞路径,提出一种基于双目立体视觉的葡萄包围体求解与定位方法。首先通过图像分割获得葡萄图像质心及其外接矩形,确定果梗感兴趣区域并在该区域内进行霍夫直线检测,通过寻找与质心距离最小的直线来定位果梗上的采摘点,运用圆检测法获取外接矩形区域内果粒的圆心和半径。然后运用归一化互相关的立体匹配法求解采摘点和果粒圆心的视差,利用三角测量原理求出各点的空间坐标。最后以采摘点的空间坐标为原点构建葡萄空间坐标系,求解葡萄最大截面,再将该截面绕中心轴旋转 360°得到葡萄空间包围体。试验结果表明:当深度距离在 1 000 mm 以内时,葡萄空间包围体定位误差小于 5 mm,高度误差小于 4.95%,最大直径误差小于 5.64%,算法时间消耗小于 0.69 s。该研究为葡萄采摘机器人的防损采摘提供一种自动定位方法。
关键词: 定位;收获;双目视觉;葡萄;防损采摘;空间包围体
论文提出了什么问题?
无损采摘是一大难题,为实现规划免碰撞采摘路径,提出基于双目立体视觉的葡萄包围体求解与定位方法。
采用了什么方法解决该问题?
采用了双目立体视觉中基于灰度值匹配的稠密视差计算方法、三角测量原理、OpenGL球体函数等方法;图像处理中的分割、霍夫直线检测、霍夫圆检测、边缘检测、滤波、形态学操作等方法;数学建模中的乘幂函数趋势回归、归一化互相关系数度量方法、多边形原理等方法。
总体方案是什么?
-
1.通过自适应图像分割获得葡萄图像质心及其外接矩形
- 确定果梗感兴趣区域并进行霍夫直线检测,寻找质心距离最小的直线定位采摘点
- 利用霍夫圆检测法获取外接矩形区域内果粒的圆心和半径
-
2.运用归一化互相关的立体匹配法求解采摘点和果粒圆心的视差
-
3.利用三角测量原理求出各点的空间坐标
-
4.以采摘点的空间坐标为原点构建葡萄空间坐标系,求解葡萄最大截面,将该截面绕中心轴旋转360度得到葡萄空间包围体
-
解决问题结果是什么?是否有其它方案?
- 定位精度测试
- 当深度距离小于 1 000 mm 时,定位误差在 5 mm 以内。深度距离在 750~900 mm 之间时,采摘点深度方向定位误差最小,当距离超过 1 000 mm 以后,误差逐渐增大,造成这个误差增大的主要原因在于当深度距离增大时采摘点的立体匹配误差增大,另外,由于基线距离是固定的,随着深度增加,系统定位误差本身也会随之增大。
- 包围体尺寸精度测试
- 当深度距离在 600~1 000 mm 之间时,高度相对误差小于4.95%,最大直径相对误差小于5.64%,而当深度距离大于 1 000 mm 时,两者的误差迅速增大,造成误差增大的主要原因是:当深度距离增加时,葡萄果粒检测容易出现漏检现象,且检测的准确度下降,此时检测出来的高度大多会小于真实值,而最大直径误差也随着采摘点和果粒圆定位误差的增大而增大。
- 算法实时性测试
- 利用 C++编程语言中的程序运行时间函数实现算法的时间消耗统计,对采集的 30 对图像进行测试,每次运行时间各不相同,但全部在 0.38~0.69 s 之间。
还存在什么问题?
- 不能处理重叠或大量被遮挡的葡萄。
- 当深度距离大于 1 000 mm 时,果粒圆最大直径相对误差迅速增大,造成误差增大的主要原因是:当深度距离增加时,葡萄果粒检测容易出现漏检现象,且检测的准确度下降,此时检测出来的高度大多会小于真实值,而最大直径误差也随着采摘点和果粒圆定位误差的增大而增大。
启发与思考。
葡萄果粒像素半径与深度值关系数学建模,定位精度测试方法将标定板置于果梗处法向为Z轴方向及测试选取同一簇葡萄不同深度30对图像进行测试等方案具有较大参考意义。