LayerNormalization 和 RMSNormalization的计算方法和区别

28 篇文章 28 订阅

目录

问题来源

Layer Normalization 与 RMSNormalization 的详细计算方法

Layer Normalization(层归一化)

RMSNormalization(均方根归一化)

Layer Normalization与RMSNormalization的异同

Layer Normalization

RMSNormalization

异同点


问题来源

在ChatGLM中,把 layer-normalization 改为 RMSNormalization,想详细了解两种归一化有什么异同?

Layer Normalization 与 RMSNormalization 的详细计算方法

Layer Normalization(层归一化)
  1. 定义
    Layer Normalization 是一种归一化技术,主要用于神经网络中,它按照每个样本的所有特征进行归一化,不同于批归一化(Batch Normalization)是按照每个特征在不同样本上进行归一化。

  2. 计算步骤

    • 计算均值
      (\mu = \frac{1}{H} \sum_{i=1}^{H} x_i)

    • 计算方差
      (\sigma^2 = \frac{1}{H} \sum_{i=1}^{H} (x_i - \mu)^2)

    • 归一化
      对于每个特征 (x_i),计算归一化值
      (\hat{x}_i = \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}})
      其中 (\epsilon) 是一个很小的数,以防止除以零。

    • 缩放和偏移
      最后,引入可学习的参数 (\gamma) 和 (\beta)(与特征维度相同),进行缩放和偏移
      (y_i = \gamma \hat{x}_i + \beta)
      (y_i) 是最终的输出特征向量。

  3. 给定一个样本的特征向量 (x = [x_1, x_2, ..., x_H]),其中 (H) 是特征的数量,Layer Normalization 的计算步骤如下:

RMSNormalization(均方根归一化)

Root Mean Square Layer Normalization(RMS Norm)提出,层归一化(Layer Normalization)之所以有效,关键在于其实现的缩放不变性(Scale Invariance),而非平移不变性(Translation Invariance)。基于这一观点,RMS Norm在设计时简化了传统层归一化的方法。它移除了层归一化中的平移操作(即去掉了均值的计算和减除步骤),而只保留了缩放操作。因此,RMS Norm仅依赖于输入特征的均方根(Root Mean Square)来进行归一化。

  1. 定义
    RMSNormalization 是一种类似于 Layer Normalization 的归一化方法,它使用均方根(Root Mean Square, RMS)代替标准差来进行归一化。

  2. 计算步骤
    给定一个样本的特征向量 (x = [x_1, x_2, ..., x_H]),RMSNormalization 的计算步骤如下:

    • 计算均方根
      (RMS = \sqrt{\frac{1}{H} \sum_{i=1}^{H} x_i^2 + \epsilon})

    • 归一化
      对于每个特征 (x_i),计算归一化值
      (\hat{x}_i = \frac{x_i}{RMS})
      同样,(\epsilon) 是一个很小的数,用于数值稳定性。

    • 缩放和偏移(可选)
      与 Layer Normalization 类似,可以引入可学习的参数 (\gamma) 和 (\beta) 进行缩放和偏移(这一步不是RMSNormalization必须的,但在某些实现中可能包含)
      (y_i = \gamma \hat{x}_i + \beta)
      (y_i) 是最终的输出特征向量。

请注意,Layer Normalization 和 RMSNormalization 的主要区别在于归一化步骤中使用的是方差(Layer Normalization)还是均方根(RMSNormalization)。其他步骤大致相同,都包含了计算均值(或均方根)、归一化以及可选的缩放和偏移。

Layer Normalization与RMSNormalization的异同

Layer Normalization(层归一化)和RMSNormalization(均方根归一化)都是神经网络中用于稳定训练过程的归一化技术。它们都旨在对神经网络中的激活进行规范化处理,以减少训练过程中的内部协变量偏移(Internal Covariate Shift)问题。尽管它们的目标相似,但在实现和应用上存在一些差异。

Layer Normalization
  1. 原理: Layer Normalization通过计算一个层内所有激活的均值和标准差,并用这些统计量对激活进行归一化,使得输出的均值为0,方差为1。

  2. 应用: Layer Normalization不依赖于批量的大小,因此它特别适用于批量大小不一或者需要减少批量相关性的场景,如循环神经网络(RNNs)和Transformer模型。

  3. 优点: Layer Normalization可以在每个时间步独立地应用于RNNs,有助于稳定隐藏状态的动态范围。

  4. 局限性: Layer Normalization在归一化时考虑了整个特征层,可能会忽略不同特征之间的差异性。

RMSNormalization
  1. 原理: RMSNormalization是一种归一化方法,它使用均方根(Root Mean Square, RMS)值对激活进行缩放。RMS值是激活的平方的均值的平方根。

  2. 应用: RMSNormalization可以用于类似Layer Normalization的场景,但它强调使用均方根而不是标准差作为规范化的尺度。

  3. 优点: RMSNormalization可能在某些情况下提供更稳定的训练过程,因为它使用均方根值,这可能对激活值的极端波动更加鲁棒。

  4. 局限性: RMSNormalization的研究和应用相对较少,因此在实际应用中可能缺乏Layer Normalization的广泛经验支持。

异同点
  • 相同点: 两者都是归一化技术,用于规范化神经网络中的激活,以减少训练过程中的内部协变量偏移问题。

  • 不同点:

    • Layer Normalization使用均值和标准差进行归一化,而RMSNormalization使用均方根值。
    • Layer Normalization在整个特征层上归一化,可能不区分不同特征间的差异;RMSNormalization则侧重于激活值的均方根,可能对极端值更加鲁棒。
    • Layer Normalization适用于不同类型的网络架构,并且在实践中被广泛采用;RMSNormalization在实际应用中可能不如Layer Normalization常见。

在ChatGLM或其他神经网络模型中替换归一化技术时,需要仔细考虑模型的特定需求和归一化技术的特性,以及可能对训练动态和最终性能产生的影响。实验和实践经验会对选择最合适的归一化策略起到关键作用。

  • 17
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

samoyan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值