LLama的激活函数SwiGLU 解释

目录

Swish激活函数

1. Swish函数公式

LLaMA模型中的激活函数

1. SwiGLU激活函数

2. SwiGLU激活函数的表达式

3. SwiGLU激活函数的优势


Swish激活函数

Swish是一种激活函数,其计算公式如下:

1. Swish函数公式

Swish(x) = x * sigmoid(x)

其中,sigmoid(x)是sigmoid函数,计算公式为:

sigmoid(x) = 1 / (1 + exp(-x))

Swish函数结合了线性函数和非线性函数的特点,能够自适应地调整激活函数的形状,因此在某些深度学习模型中,Swish函数的表现优于常见的ReLU函数。

LLaMA模型中的激活函数

在LLaMA模型中,使用的激活函数是SwiGLU[1][2][3]

1. SwiGLU激活函数

SwiGLU是LLaMA模型在前馈神经网络(FFN)阶段使用的激活函数[2:1]。它取代了ReLU非线性函数,以提高模型的性能[3:1]

2. SwiGLU激活函数的表达式

SwiGLU是Gated Linear Units(GLU)激活函数的一种变体,其公式为:

SwiGLU(x,W, V, b, c) = Swish_1(xW + b) ⊗ (xV + c)

其中,Swish_β(x) = x σ(β x),σ为sigmoid函数,⊗为逐元素乘[1][2][3]

3. SwiGLU激活函数的优势

SwiGLU的优势主要体现在以下几个方面:

3.1 提升性能:SwiGLU被应用于Transformer架构中的前馈神经网络(FFN)层,用于增强性能[1:1][2:1][3:1]

3.2 可微性:SwiGLU是处处可微的非线性函数[1:2]

3.3 自适应性:GLU是一种类似于长短期记忆网络(LSTM)带有门机制的网络结构,通过门机制控制信息通过的比例,来让模型自适应地选择哪些单词和特征对预测下一个词有帮助[3:2]

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

def gelu(x):
   return x * norm.cdf(x)

def relu(x):
   return np.maximum(0, x)

def swish(x, beta=1):
   return x * (1 / (1 + np.exp(-beta * x)))

def swiglu(x, W, V, b, c):
   return swish(x*W + b) * (x*V + c)

x_values = np.linspace(-5, 5, 500)
gelu_values = gelu(x_values)
relu_values = relu(x_values)
swish_values = swish(x_values)
swish_values2 = swish(x_values, beta=0.5)
swiglu_values = swiglu(x_values, 1, 1, 0, 0) # Here you need to set the parameters W, V, b, and c according to your needs

plt.plot(x_values, gelu_values, label='GELU')
plt.plot(x_values, relu_values, label='ReLU')
plt.plot(x_values, swish_values, label='Swish')
plt.plot(x_values, swish_values2, label='Swish (beta=0.5)')
plt.plot(x_values, swiglu_values, label='SwiGLU')
plt.title("GELU, ReLU, Swish, and SwiGLU Activation Functions")
plt.xlabel("x")
plt.ylabel("Activation")
plt.grid()
plt.legend()
plt.show()

  1. 大模型基础|激活函数|从ReLU 到SwiGLU - 知乎

  2. 为什么大型语言模型都在使用 SwiGLU 作为激活函数? - 腾讯云

  3. 大模型系列:SwiGLU激活函数与GLU门控线性单元原理解析


  1. LLaMA:Open and Efficient Foundation Models

  2. llama2介绍(模型结构+参数计算)

  3. LLaMA Explained | Papers With Code

<think>好的,用户想了解SwiGLU激活函数的图像或可视化表示。首先,我需要回忆一下SwiGLU的结构。SwiGLU结合了Swish和GLU两种激活函数的特点。Swish函数是$x \cdot \sigma(\beta x)$,而GLU则是将输入分为两部分,通过逐元素相乘和sigmoid门控。所以SwiGLU的数学表达式应该是$x \cdot \sigma(Wx + b) \cdot (Vx + c)$?或者可能有不同的组合方式。 接下来,我需要确认正确的SwiGLU公式。根据记忆,SwiGLU的公式通常写作$Swish(xW + b) \otimes (xV + c)$,其中$\otimes$是逐元素相乘,Swish函数是$x \cdot \sigma(\beta x)$。但有时可能简化为$x \cdot \sigma(Wx) \cdot (Vx)$,不过可能省略了偏置项。需要查阅相关文献确认。例如,在Transformers模型中使用的SwiGLU可能采用类似的结构[^1]。 然后,用户需要可视化,我应该考虑如何绘制这个函数的图像。因为SwiGLU是多变量函数,直接绘制可能需要简化。通常,参数W和V可能被设为标量或者特定的矩阵形式。例如,假设W和V都是1x1的权重,可以简化为标量,比如W=1,V=1,b=0,c=0。这样,SwiGLU就变为$x \cdot \sigma(x) \cdot x$,即$x^2 \cdot \sigma(x)$?或者是不是这样?可能我记错了,需要再仔细推导。 假设正确的表达式是$(xW + b) \cdot \sigma(xV + c)$,如果W和V是标量,比如W=1,V=1,b=0,c=0,那么公式变为$x \cdot \sigma(x)$,这其实是Swish函数,但SwiGLU可能是在GLU结构中使用Swish作为门控。可能正确的表达式是$x \cdot \sigma(Swish(x))$?或者更准确地说,SwiGLU是GLU的变种,其中门控函数使用Swish激活。例如,GLU的公式是$x * \sigma(Wx + b),而SwiGLU则是$x * Swish(Wx + b)。因此,SwiGLU的公式是$x \cdot (Swish(Wx + b))$。这时候,如果W和b是标量参数,比如W=1,b=0,那么SwiGLU就是$x \cdot Swish(x) = x \cdot (x \cdot \sigma(x)) = x^2 \sigma(x)$。这可能更准确。 为了绘制图像,我需要生成x值的范围,比如-5到5,然后计算对应的y值。例如,对于每个x,计算Swish部分,再乘以x。或者可能原式是Swish(Wx + b)乘以另一个线性变换后的结果。这部分可能需要更仔细的分析。 假设正确的SwiGLU公式是$(xW + b) \otimes \sigma(xV + c)$,其中⊗是逐元素相乘。如果参数设为标量形式,例如W=1,V=1,b=0,c=0,那么公式变为x * σ(x),这其实是Swish函数,β=1的情况。这时候,SwiGLU等同于Swish函数?这可能和实际应用中的情况不同,因为SwiGLU通常用于多层结构中,可能涉及不同的权重。或许正确的表达式是SwiGLU(x) = Swish(xW + b) * (xV + c),其中W和V是不同的权重矩阵。但为了简化可视化,可能需要将参数设为标量,并调整β的值,看看图像的变化。 另外,用户可能需要看到SwiGLU与其他激活函数(如ReLU、GELU)的对比,以便理解其特性。例如,SwiGLU可能在某些区域具有非单调性或者更平滑的梯度。 现在,我需要生成Python代码来绘制这个函数。假设使用matplotlib,并且numpy来处理数值计算。例如,定义swish函数,然后定义swiglu,但需要明确参数设置。如果SwiGLU是Swish(Wx) * Vx,那么可能需要两个权重参数。不过,在简化情况下,可能假设W和V都是1,此时函数变为Swish(x) * x,即x * x * σ(x)。或者可能另一个线性变换后的结果。 可能存在混淆,因此最好参考原始论文或权威资料。例如,在“GLU Variants Improve Transformer”一文中,SwiGLU被提出作为GLU的一种变体,使用Swish作为激活函数。其公式可能为SwiGLU(x, W, V, b, c) = Swish(xW + b) ⊗ (xV + c),其中⊗是逐元素乘法。如果V是另一个权重矩阵,而这里假设输入x是向量,那么在可视化时可能需要降维处理。但为了简化,可以假设x是标量,W和V也是标量,此时SwiGLU函数为 (Swish(w1*x + b)) * (w2*x + c),其中w1, w2, b, c是参数。为了绘制图像,可以设置这些参数为1或0,简化函数。 例如,设w1=1,w2=1,b=0,c=0,那么SwiGLU(x) = Swish(x) * x = x * σ(x) * x = x² σ(x)。这可能是一个可能的简化形式。但需要确认是否正确。 现在,编写代码: 生成x的范围,比如-5到5,间隔0.1。 定义swish函数:def swish(x, beta=1): return x * (1 / (1 + np.exp(-beta * x))) 然后,定义swiglu:假设为swish(x) * x,即x² * σ(x) 绘制图像,并比较ReLU、Swish等。 不过,这可能与真实的SwiGLU实现有所不同。例如,在Transformers的代码中,SwiGLU层通常是将输入分为三部分,并应用不同的变换。例如,输入维度为d,分成三部分,每部分d/3,然后进行swish(w1*x) * w2*x。这种情况下,可能SwiGLU的表达式是swish(xW) ⊙ xV,其中W和V是不同的权重矩阵。但为了可视化,可以假设x是标量,W和V也是标量,此时函数为swish(w1 x) * w2 x。如果w1和w2都是1,则为swish(x) * x = x² σ(x)。这可能就是绘制的函数。 现在,编写代码并生成图像,保存为图片或直接在notebook中显示。用户可能需要查看不同beta值的影响,或者不同的权重参数。但通常,SwiGLU的参数是在训练中学习的,但可视化时固定参数以展示形状。 总结:SwiGLU的函数形式可能为xW ⋅ σ(xV + b),或者类似结构,其中W和V是权重。在简化情况下,图像可能类似于x² σ(x),在正值区域增长较快,负值区域趋近于零,类似Swish但更陡峭。需要确保代码正确,并正确解释图像的特点。</think>SwiGLU激活函数是Swish函数与门控线性单元(GLU)的结合,其数学表达式可表示为: $$ \text{SwiGLU}(x) = xW \cdot \sigma(\beta xV) $$ 其中$W$和$V$为可学习参数,$\sigma$为Sigmoid函数,$\beta$为Swish函数的缩放参数。 ### 可视化实现 以下是使用Python绘制SwiGLU函数图像的示例代码(假设$W=1$, $V=1$, $\beta=1$): ```python import numpy as np import matplotlib.pyplot as plt def swiglu(x, beta=1): return x * (x / (1 + np.exp(-beta * x))) # x * Swish(x) x = np.linspace(-5, 5, 500) y = swiglu(x) plt.figure(figsize=(8,4)) plt.plot(x, y, label='SwiGLU') plt.xlabel('x'), plt.ylabel('SwiGLU(x)') plt.title('SwiGLU Activation Function') plt.grid(True) plt.legend() plt.show() ``` ### 图像特性 1. **非线性响应**:在$x>0$区域呈现类线性增长,在$x<0$区域快速饱和 2. **平滑梯度**:全程可导,无ReLU的"死区"问题 3. **门控机制**:通过Sigmoid函数实现自适应特征选择
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

samoyan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值