Hoeffding不等式

Hoeffding不等式是关于一组随机变量均值的概率不等式。 如果X1,X2,,Xn为一组独立同分布的参数为p的伯努利分布随机变量,n为随机变量的个数。定义这组随机变量的均值为:

average_x_1

对于任意δ>0, Hoeffding不等式可以表示为

hoeffding_11

上面的公式似乎写的不是很详细,所以我又从网上copy了一份其他的解释:

Hoeffding不等式:Hoeffding不等式好像有很多个形式,all of statistics里的感觉较难理解,这里写一种好理解的。令 X1,,Xn 为独立同分布随机变量,满足 aiXibi 。则对于任意 t>0

P(X¯E(X¯)t)e2n2t2ni=(biai)2P(|X¯E(X¯)|t)2e2n2t2ni=(biai)2.

其中, X¯=1nni=1Xi


至于这个公式怎么证明,就不要为难自己了~

而这个公式的用途:

在统计推断中,我们可以利用样本的统计量(statistic)来推断总体的参数(parameter),譬如使用样本均值来估计总体期望。如下图所示,我们从罐子里抽球,希望估计罐子里红球和绿球的比例。

bin_sample

直觉上,如果我们有更多的样本(抽出更多的球),则样本期望ν应该越来越接近总体期望μ。事实上,这里可以用hoeffding不等式表示如下:

bin_sample_hoeffding

从hoeffding不等式可以看出,当n逐渐变大时,不等式的UpperBound越来越接近0,所以样本期望越来越接近总体期望。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值