数学分析(九)-定积分4-定积分的性质2-2:推广的积分第一中值定理【若f与g在[a,b]上连续,g不变号,则至少存在一点ξ∈[a,b],使得∫ₐᵇf(x)g(x)dx=f(ξ)∫ₐᵇg(x)dx】

本文介绍了数学分析中的两个重要定理——积分第一中值定理及其推广。定理9.8表明,如果函数f和g在[a, b]上连续且g在该区间内不变号,那么存在一点ξ,使得两者的乘积积分等于f(ξ)乘以g的积分。当g恒为1时,定理还原为积分第一中值定理。" 102729737,6319351,二叉搜索树与平衡二叉树详解,"['数据结构', '二叉搜索树', '平衡二叉树']
摘要由CSDN通过智能技术生成

定理 9.7 (积分第一中值定理)

f f f [ a , b ] [a, b] [a,b] 上连续, 则至少存在一点 ξ ∈ [ a , b ] \xi \in[a, b] ξ[a,b],使得

∫ a b f ( x ) d x = f ( ξ ) ( b − a ) . ( 7 ) \int_{a}^{b} f(x) \mathrm{d} x=f(\xi)(b-a) .\quad\quad(7) abf(x)dx=f(ξ)(ba).(7)


定理9.8 推广的积分第一中值定理

f f f g g g 都在 [ a , b ] [a, b] [a,b] 上连续, 且 g ( x ) g(x) g(x) [ a , b ] [a, b] [a,b] 上不变号, 则至少存在一点 ξ ∈ [ a , b ] \xi \in[a, b] ξ[a,b], 使得

∫ a b f ( x ) g ( x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值