定理 9.7 (积分第一中值定理)
若 f f f 在 [ a , b ] [a, b] [a,b] 上连续, 则至少存在一点 ξ ∈ [ a , b ] \xi \in[a, b] ξ∈[a,b],使得
∫ a b f ( x ) d x = f ( ξ ) ( b − a ) . ( 7 ) \int_{a}^{b} f(x) \mathrm{d} x=f(\xi)(b-a) .\quad\quad(7) ∫abf(x)dx=f(ξ)(b−a).(7)
定理9.8 推广的积分第一中值定理
若 f f f 与 g g g 都在 [ a , b ] [a, b] [a,b] 上连续, 且 g ( x ) g(x) g(x) 在 [ a , b ] [a, b] [a,b] 上不变号, 则至少存在一点 ξ ∈ [ a , b ] \xi \in[a, b] ξ∈[a,b], 使得
∫ a b f ( x ) g ( x