矩母函数(mgf)

本篇笔记内容来源
数理统计学导论(原书第7版) 机械工业出版社


定义

X X X 是随机变量,使得对于某个 h > 0 h>0 h>0 e t X e^{tX} etX 的期望对于 − h < t < h -h<t<h h<t<h 存在,对于 − h < t < h -h<t<h h<t<h X X X 的矩母函数(moment generating function,又称矩生成函数)定义成

M ( t ) = E ( e t X ) M(t)=E(e^{tX}) M(t)=E(etX)

用缩写词 m g f mgf mgf 表示随机变量的矩母函数.


m g f mgf mgf 与分布一一对应(如果有的话)

m g f → c d f mgf\rightarrow cdf mgfcdf

X X X Y Y Y 是两个随机变量,分别具有矩母函数 M X M_X MX M Y M_Y MY ,在关于 0 0 0 的开区间存在,于是,对于所有 z ∈ R z\in R zR F X ( z ) = F Y ( z ) F_X(z)=F_Y(z) FX(z)=FY(z) 当且仅当,对于某个 h > 0 h>0 h>0 ,就所有 t ∈ ( − h , h ) t\in(-h,h) t(h,h) 而言, M X ( t ) = M Y ( t ) M_X(t)=M_Y(t) MX(t)=MY(t) .

c d f → m g f cdf\rightarrow mgf cdfmgf

X X X Y Y Y 是两个具有 m g f mgf mgf 的随机变量. 如果 X X X Y Y Y 具有相同分布,那么在 0 0 0 的某个邻域内一定有 M X ( t ) = M Y ( t ) M_X(t)=M_Y(t) MX(t)=MY(t)


矩(moment)

如果 m m m 是正整数,并且 M ( m ) ( t ) M^{(m)}(t) M(m)(t) 意指 M ( t ) M(t) M(t) 的第 m m m 阶导数

那么可通过对 t t t 反复求导,得到

M ( m ) ( 0 ) = E ( X m ) = { ∫ − ∞ ∞ x f ( x ) d x ∑ x m p ( x ) M^{(m)}(0)=E(X^{m})= \begin{cases} \int^{\infty}_{-\infty}xf(x)\mathrm{d}x\\ \sum x^mp(x) \end{cases} M(m)(0)=E(Xm)={xf(x)dxxmp(x)

而这类积分(或求和)在力学中称为矩(moment)

所以叫矩母函数


m g f mgf mgf 不存在的情况

X X X 是连续的随机变量,具有 p d f pdf pdf

f ( x ) = 1 π 1 x 2 + 1 f(x)=\frac{1}{\pi}\frac{1}{x^2+1} f(x)=π1x2+11

这是柯西分布的 p d f pdf pdf

t > 0 , x > 0 t>0,x>0 t>0,x>0 时,根据拉格朗日中值定理,对 ξ ∈ ( 0 , t x ) \xi\in(0,tx) ξ(0,tx) ,有

e t x − 1 t x = e ξ ⩾ 1 \frac{e^{tx}-1}{tx}=e^{\xi}\geqslant1 txetx1=eξ1

所以 e t x ⩾ t x e^{tx}\geqslant tx etxtx ,从而得到下面推导的第二个不等式

∫ − ∞ ∞ e t x 1 π 1 x 2 + 1 d x ⩾ ∫ 0 ∞ e t x 1 π 1 x 2 + 1 d x ⩾ ∫ 0 ∞ 1 π t x x 2 + 1 d x = ∞ \int^{\infty}_{-\infty}e^{tx}\frac{1}{\pi}\frac{1}{x^2+1}\mathrm{d}x \geqslant\int^{\infty}_{0}e^{tx}\frac{1}{\pi}\frac{1}{x^2+1}\mathrm{d}x \geqslant\int^{\infty}_{0}\frac{1}{\pi}\frac{tx}{x^2+1}\mathrm{d}x =\infty etxπ1x2+11dx0etxπ1x2+11dx0π1x2+1txdx=

所以,柯西分布的 m g f mgf mgf 不存在

(虽然只证明了一个例子,但书上就是这样写的)


分布可能没有矩母函数,但一定有特征函数

定义

i i i 表示虚数单位, t t t 表示任意实数

φ ( t ) = E ( e i t X ) \varphi(t)=E(e^{itX}) φ(t)=E(eitX)

φ ( t ) = M ( i t ) \varphi(t)=M(it) φ(t)=M(it)

一定存在

∣ φ ( t ) ∣ = ∣ ∫ − ∞ ∞ e i t x f ( x ) d x ∣ |\varphi(t)|=|\int^{\infty}_{-\infty}e^{itx}f(x)\mathrm{d}x| φ(t)=eitxf(x)dx

f ( x ) f(x) f(x) 是非负的

∣ e i t x ∣ = ∣ cos ⁡ t x + i sin ⁡ t x ∣ = cos ⁡ 2 t x + sin ⁡ 2 t x = 1 |e^{itx}|=|\cos tx+i\sin tx|=\sqrt{\cos^2 tx+\sin^2 tx}=1 eitx=costx+isintx=cos2tx+sin2tx =1 (复数的模长公式)

所以

∣ φ ( t ) ∣ ⩽ ∫ − ∞ ∞ f ( x ) d x = 1 |\varphi(t)|\leqslant\int^{\infty}_{-\infty}f(x)\mathrm{d}x=1 φ(t)f(x)dx=1

  • 19
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值