【主题建模】基于 LDA 和 BERTopic 的 COVID-19 论文内容分析

本文利用 LDA 和 BERTopic 分析 COVID-19 论文,从社科角度揭示研究主题。通过对 CORD-19 数据集的筛选和主题建模,发现疫苗、预防措施、牙科护理、经济影响、心理健康等热门话题,以及各国研究的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于 LDA 和 BERTopic 的 COVID-19 论文内容分析

关于 COVID-19 的研究不胜枚举,截至 2022 年初,已发表了超过 800000 800000 800000 篇与 COVID-19 相关的论文。对这些论文进行梳理是一项非常具有挑战性的任务,但这可以帮助我们确定哪些领域可以更多的从研究或研究基金中受益。在本文中,我将评估这些 COVID-19 研究论文的主题,尝试揭示这些统计数据和趋势。

数据集来自 The COVID-19 Open Research Dataset (CORD-19),该数据

### BERTopic 使用指南 #### 安装 BERTopic 库 为了使用 BERTopic 进行主题建模,首先需要安装该库。可以通过 pip 命令轻松完成这一操作。 ```bash pip install bertopic ``` 此命令会下载并安装最新版本的 BERTopic 及其依赖项[^1]。 #### 初始化基本设置 一旦安装完毕,可以在 Python 脚本中导入 `BERTopic` 类来进行初始化: ```python from bertopic import BERTopic topic_model = BERTopic() ``` 这段代码创建了一个默认配置下的 BERTopic 实例,适用于大多数场景。对于更复杂的需求,则可以调整多个参数以优化性能效果[^3]。 #### 参数配置选项 一些重要的可调参数包括但不限于: - **embedding_model**: 自定义词向量模型,默认采用 Sentence-BERT。 - **umap_model**: UMAP 维度约减算法实例,用于降维处理文档嵌入表示。 - **hdbscan_model**: HDBSCAN 聚类器对象,负责基于距离矩阵执行聚类分析。 - **vectorizer**: 文档预处理器,通常指 TF-IDF 或 CountVectorizer 的变种形式。 这些组件的选择直接影响最终的主题提取质量以及计算效率,在具体应用场景下应当仔细权衡利弊后作出适当选择[^2]。 #### 案例教程:从文本数据集中发现隐藏模式 下面给出一个完整的例子展示如何运用 BERTopic 对一组新闻报道进行分类整理,并可视化所得结果。 假设已经准备好了一份名为 `news_articles.csv` 的 CSV 文件,其中包含两列——标题 (`title`) 正文 (`content`)。 ```python import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from umap import UMAP from hdbscan import HDBSCAN from sentence_transformers import SentenceTransformer from bertopic import BERTopic # 加载数据集 df = pd.read_csv('news_articles.csv') # 配置自定义参数 sentence_model = SentenceTransformer("all-MiniLM-L6-v2") umap_model = UMAP(n_neighbors=15, n_components=5, metric='cosine') hdbscan_model = HDBSCAN(min_cluster_size=10, gen_min_span_tree=True) count_vectorizer = CountVectorizer(stop_words="english") # 创建带有特定参数设定的话题模型 topic_model = BERTopic( embedding_model=sentence_model, umap_model=umap_model, hdbscan_model=hdbscan_model, vectorizer_model=count_vectorizer) # 训练模型并获取话题分配情况 topics, probs = topic_model.fit_transform(df['content']) # 输出前五个最常出现的话题及其代表关键词 for i in range(5): print(f"Topic {i}: ", end="") print(topic_model.get_topic(i)) # 将话题分布映射回原始 DataFrame 表格结构以便后续探索性数据分析 df["topic"] = topics print("\nSample of articles with their assigned topics:") print(df[['title', 'topic']].head()) ``` 上述脚本演示了整个工作流程,从加载外部文件直至呈现初步的结果摘要。值得注意的是,这里选择了不同的超参数组合来适应当前的数据特征;实践中应根据实际情况灵活调整各项设置以获得最佳表现。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G皮T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值