时间序列 R 08 指数平滑 Exponential smoothing

1.1 简单指数平滑

“simple exponential smoothing” (SES)
SES适用于不计趋势与季节性的时间序列
我们在可以使用平均值模型和naive模型来做粗略的预测(点击查看),他们懂预测方法分别是
- 使用最后一个值(naive模型)
- 使用前面值的平均数(平均值)
这里的简单指数平滑是用的前面几个值的加权平均数,越靠近最后的权重越大,后面的权重指数下降
SES的公式如下

y^T+1|T=αyT+α(1α)yT1+α(1α)2yT2+

α 就是平滑指数,值越大越忽略距离远的数值。
还可以写成以下形式:、
y^t+1|t=αyt+(1α)y^t|t1

其中第一个的值的计算公式如下:
y^2|1=αy1+(1α)0

我们可以发现这样的问题:其中的 0 α 的值怎么选取最好?
通常的简单做法直接把 0 设置为y0。
这里我们可以借鉴最小二乘法的方法,通过求解SSE(sum of the squared errors)求最佳参数。
下图显示了不同参数时的SSE值,其中最后一个是通过求解SSE最小值得到的
这里写图片描述
这里写图片描述
由此可以看出简单指数平滑初步的可以选择了拟合较好的值来预测,比起最初的简单模型要更加合理

1.2 霍尔特线性趋势预测 Holt’s linear trend method

前面的简单指数平滑只能预测一个相同的值,不能有趋势,可以进行一定的线性预测,Holt将其进行了改进,加入了二次平滑,其公式如下:

Forecast equationLevel equationTrend equationyt+h|ttbt=t+hbt=αyt+(1α)(t1+bt1)=β(tt1)+(1β)bt1

其中b是斜率,其中包含的迭代公式就是第二次平滑。
同样其参数的确定可以根据SSE来计算
sse公式
tbt=t1+bt1+αet=bt1+αβet

et=yt(t1+bt1)=ytyt|t1

这里写图片描述
如果其预测值可以有限性趋势,图中其他方法将在后续介绍

1.3 指数趋势预测法Exponential trend method

该方法是将线性趋势中的斜率又一个加数变为了一个乘数因子,公式如下:

y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值