通过前面的学习,我们掌握了Python编程和数据处理,下面我们要介绍怎么来做量化,具体有哪些步骤。量化交易其实就是将交易过程按照你定好的交易策略写成程序,然后将需要的股票以及其它你认为需要数据导入其中,通过程序来判断是否买进或者卖出的,然后通过手动或者自动进行股票和期货等的交易过程。
但是我的交易策略是否靠谱,能不能通过这个交易策略挣到钱,这个在真正交易之前谁也不知道,通常这些交易策略是不怎么靠谱的,要是有个系统,可以对我的策略进行检验就好了,验证通过了能挣钱的策略才真正去对接股票帐号进行操作,这样能避免好多损失,因此量化回测就涎生了。
量化交易回测是指使用历史数据对量化交易策略进行模拟交易,以评估策略的有效性和风险收益特征。
量化交易回流的具体过程通常包括以下几个步骤:
- 获取历史数据:收集足够长时间区间内的高质量市场数据,包括价格、成交量等,作为回测的输入。
- 策略编码:将交易策略转化为计算机可执行的代码,明确规定入市、出市的条件和头寸管理规则。
- 参数优化:通过调整策略参数,寻找历史数据上表现最优的参数组合,以期达到最大的收益或风险调整后收益。
- 回测执行:用优化后的参数在历史数据上运行策略,模拟交易过程,记录交易细节,计算策略收益等关键指标。
- 绩效分析:评估策略在样本内和样本外数据上的表现,分析收益率、回撤、夏普比率、交易频率等,判断策略是否有效且可行。
- 结果解释:分析策略盈利或亏损的原因,识别影响策略表现的关键因素,为进一步优化策略提供依据。
- 稳健性检验:采用不同的市场区间、交易成本等进行敏感性分析,考察策略在各种情况下的适应性和稳健性。
回测的目的是在实际运行前验证策略的有效性,发现潜在问题,为实盘交易提供决策支持。但需注意,回测结果受限于历史数据,存在过拟合风险,未来表现不确定,仍需审慎评估策略的实用性。
量化交易根据交易频率、持仓时间、策略逻辑等维度,可以分为以下几种主要类型:
高频交易(High-Frequency Trading, HFT)
极高的交易频率,通常日内交易,持仓时间很短
利用微小的价格差异和市场inefficiencies,快速进出获利
对行情和交易系统的速度和稳定性要求极高
主要策略:做市、统计套利、搏动交易等
中低频交易
日内交易或隔夜持仓,交易频率低于HFT
追求更大的单笔收益,对市场趋势和方向性把握要求更高
主要策略:趋势跟踪、均值回归、动量交易、配对交易等
算法执行(Algorithmic Execution)
通过算法将大额订单拆分成小单,以降低市场冲击和交易成本
追求最优执行价格,控制交易风险
主要策略:TWAP、VWAP、POV、Iceberg等
基本面量化(Fundamental Quantitative)
基于公司财务、宏观经济等基本面数据构建模型,寻找被低估/高估的证券
通常中长期持仓,交易频率相对较低
主要策略:多因子模型、行业轮动等
事件驱动(Event-Driven)
捕捉事件(如财报、并购、重大新闻等)带来的交易机会
通常持仓时间较短,有一定的时效性要求
主要策略:财报套利、并购套利、舆情交易等
统计套利(Statistical Arbitrage)
利用证券间的统计关系和价格偏离,构建中性组合
通过均值回归获利,通常对冲市场风险
主要策略:配对交易、期限结构套利、ETF套利等
机器学习/人工智能策略
运用机器学习算法(如神经网络、SVM、强化学习等)挖掘复杂的交易信号
适应不断变化的市场状态,自动调整模型参数
前景广阔,但对数据质量、计算能力和模型可解释性要求较高
以上分类并非完全独立,一个完整的量化交易系统可能会综合运用多种策略类型。此外,还有一些如CTA、套利等其他类型的量化策略。量化交易者需要根据自己的风险偏好、市场理解和技术能力,选择适合的策略类型。对于个人炒股爱好者来说,高频交易对硬件和网络要求都很高,个人一般负担不起,因此入门阶段我们一般都是选择中低频交易。