量化交易入门(四十一)ASI指标Python实现和回测

本文通过使用ASI指标在Backtrader框架下对苹果股票进行回测,展示了策略执行结果,包括亏损的年化收益率、负夏普比率以及较大的最大回撤。作者解释了指标的工作原理,并提供了代码实现,以供理解和学习量化交易的基础知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

老规矩先上图,看看ASI指标使用苹果数据回测后的结果如何。

一、策略运行结果

执行的结果:
Starting Portfolio Value: 100000.00 
Final Portfolio Value: 92514.82
Annualized Return: -1.93%
Sharpe Ratio: -0.27
Max Drawdown: 25.34%
Max Drawdown Period: 441

唉,好像亏钱了,测试了这么多个指示,这个指标好像亏得最多。让我们一起分析一下这个结果:

  1. 初始资产组合价值为100,000美元,最终资产组合价值为92,514.82美元。这意味着在回测期间,策略的总体表现为亏损,资产组合价值下降了7,485.18美元。

  2. 年化收益率为-1.93%,表明该策略在回测期间的平均年度收益率为负。这意味着投资者使用该策略平均每年会损失1.93%的资金。

  3. 夏普比率为-0.27。夏普比率衡量投资组合的风险调整后收益,数值越高表示风险调整后的表现越好。负的夏普比率表明该策略的表现差于无风险利率(如国债收益率),投资者承担了额外的风险却获得了更低的回报。

  4. 最大回撤为25.34%,表示从策略的历史最高点到最低点的最大跌幅。这意味着投资者在最糟糕的情况下会损失25.34%的资金。

  5. 最长回撤期为441个交易日。这表示策略从最高点跌至最低点所需的时间。较长的回撤期可能表明策略从损失中恢复的时间较长。

综合来看,该ASI策略在回测期间表现不佳,年化收益率为负,夏普比率为负,最大回撤超过25%,回撤期较长。这表明该策略在回测期间承担了较高的风险,但未能获得相应的回报。

 二、代码实现

基于ASI指标对苹果股票进行回测。以下是完整的代码:

import backtrader as bt
import yfinance as yf

class DMIStrategy(bt.Strategy):
    params = (
        ('period', 14),
        ('up_trend_threshold', 25),
        ('down_trend_threshold', 25),
    )

    def __init__(self):
        self.dmi = bt.indicators.DMI(period=self.params.period)
        self.crossover_dmi = bt.indicators.CrossOver(self.dmi.plusDI, self.dmi.minusDI)

    def next(self):
        if not self.position:
            if self.dmi.plusDI[-1] > self.params.up_trend_threshold and self.crossover_dmi > 0:
                commission_info = self.broker.getcommissioninfo(self.data)
                cash = self.broker.get_cash()
                size = int(cash / (self.data.close[0] * (1 + commission_info.p.commission)))
                self.order = self.buy(size=size)
                print(f'BUY: {size} shares')
        else:
            if self.dmi.minusDI[-1] > self.params.down_trend_threshold and self.crossover_dmi < 0:
                self.order = self.close()
                print(f'SELL: {self.position.size} shares')

    
    def notify_order(self, order):
        if order.status in [order.Submitted, order.Accepted]:
            return

        if order.status in [order.Completed]:
            if order.isbuy():
                print(f'BUY executed at {self.data.num2date(order.executed.dt).date()}, Price: {order.executed.price:.2f}, Cost: {order.executed.value:.2f}, Comm: {order.executed.comm:.2f}')
            elif order.issell():
                cost = order.executed.value
                profit = order.executed.value - order.created.size * order.created.price
                profit_percent = (profit / cost) * 100
                print(f'SELL executed at {self.data.num2date(order.executed.dt).date()}, Price: {order.executed.price:.2f}, Cost: {cost:.2f}, Profit: {profit:.2f}, Profit %: {profit_percent:.2f}%')

        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            print('Order Canceled/Margin/Rejected')    



# 创建Cerebro引擎
cerebro = bt.Cerebro()

# 设置初始资金
cerebro.broker.setcash(100000.0)

# 下载苹果股票数据
data = yf.download('AAPL', '2020-01-01', '2023-12-30')
data = data.dropna()

# 将数据添加到Cerebro引擎中
data = bt.feeds.PandasData(dataname=data)
cerebro.adddata(data)

# 添加MACD策略
cerebro.addstrategy(DMIStrategy)

# 设置佣金为0.1%
cerebro.broker.setcommission(commission=0.001)

# 添加分析指标
cerebro.addanalyzer(bt.analyzers.Returns, _name='returns')
cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe')
cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown')

# 运行回测
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
results = cerebro.run()
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

# 获取回测结果
strat = results[0]
returns = strat.analyzers.returns.get_analysis()
sharpe = strat.analyzers.sharpe.get_analysis()
drawdown = strat.analyzers.drawdown.get_analysis()

# 打印回测指标
print('Annualized Return: %.2f%%' % (returns['rnorm100']))
print('Sharpe Ratio: %.2f' % (sharpe['sharperatio']))
print('Max Drawdown: %.2f%%' % (drawdown['max']['drawdown']))
print('Max Drawdown Period: %s' % (drawdown['max']['len']))


# 绘制回测结果
cerebro.plot()

三、代码解读

  1. 导入必要的库:backtrader和yfinance。

  2. 定义ASI指标:

    • ASI指标用于衡量市场的积累/派发强度,结合了价格和成交量信息。
    • __init__方法中,添加了一个用于计算ASI指标EMA(指数移动平均)的line。
    • next方法中,计算当前的ASI值。如果收盘价和成交量同时上涨或下跌,则ASI值为它们的乘积;否则,ASI值为0。
  3. 定义交易策略:

    • __init__方法中,创建了ASI指标的实例,并初始化了订单变量。
    • next方法中,根据ASI指标的值来决定买入或卖出。如果当前ASI值大于0且前一个ASI值小于等于0,则买入;如果当前ASI值小于0且前一个ASI值大于等于0,则卖出。
    • 在买入时,根据可用资金和佣金计算可以买入的股票数量,并下单买入。
    • 在卖出时,平仓所有持仓。
    • notify_order方法中,处理订单的执行情况。打印买入和卖出的详细信息,包括执行日期、价格、成本、利润等。
  4. 创建Cerebro引擎,设置初始资金为100,000美元。

  5. 从Yahoo Finance下载苹果股票的数据,时间范围为2020年1月1日至2023年12月30日,并将数据添加到Cerebro引擎中。

  6. 将ASI交易策略添加到Cerebro引擎中。

  7. 设置佣金为0.1%。

  8. 添加分析指标:年化收益率、夏普比率和最大回撤。

  9. 运行回测,打印回测前后的资产组合价值。

  10. 获取回测结果,并打印年化收益率、夏普比率、最大回撤和最大回撤期。

  11. 绘制回测结果图表。

这个示例展示了如何使用Backtrader框架和自定义指标(ASI)来构建交易策略并进行回测。通过分析回测结果,可以评估策略的性能,包括收益率、风险调整后收益(夏普比率)和回撤等指标。

需要注意的是,这只是一个简单的示例,实际应用中需要根据具体情况进行策略优化和风险控制。在做出任何实际的投资决策之前,建议进行全面的研究和分析。

经过系列的文章我们学习到了python的入门,量化的基本知识,Backtrader回测框架以及各种技术指标,以及通过这些技术指标进行的回测。我们应该对量化交易入门有了一定的了解。这个系列的博文就到此结束了。我将在5月份开启量化交易实战系列博文,请大家继续关注,一起学习提高。

抱歉,我是一名语言模型,无法直接执行代码。但我可以提供一些思路,帮助您计算ASI指标值。 ASI指标是Accumulative Swing Index的缩写,是一种技术分析指标,用于评估价格波动趋势的强度。ASI指标的计算方法较为复杂,需要依次计算每一笔交易ASI值。 以下是ASI指标的计算公式步骤: 1. 计算每一笔交易的True Range(TR): TR = max(high - low, abs(high - preClose), abs(low - preClose)) 其中,high、lowpreClose分别表示当日的最高价、最低价前一日的收盘价。 2. 计算每一笔交易的Directional Movement(DM): +DM = high - preHigh -DM = preLow - low 如果+DM-DM都为0,则+DM-DM的值都为0;如果+DM大于-DM,则-DM的值为0;如果-DM大于+DM,则+DM的值为0。 3. 计算每一笔交易的Directional Movement Index(DMI): +DMI = 100 * EMA(+DM, n) / TR -DMI = 100 * EMA(-DM, n) / TR 其中,EMA表示指数移动平均,n为指数移动平均的周期,通常取14。 4. 计算Swing Index(SI)Accumulative Swing Index(ASI): a. 计算每一笔交易的R: R = SI[t - 1] + 0.5 * DM[t - 1] + 0.25 * DM[t] 其中,t表示当前交易日的序号,SI[t-1]表示前一笔交易的Swing Index值。 b. 计算每一笔交易的SI: 如果DMI[t]大于DMI[t-1],则SI[t] = R + max(high[t-1] - preClose[t], preClose[t] - low[t-1]); 如果DMI[t]小于DMI[t-1],则SI[t] = R + max(high[t-1] - preClose[t], preClose[t] - low[t-1]) - min(low[t-1] - preClose[t], preClose[t] - high[t-1]); 如果DMI[t]等于DMI[t-1],则SI[t] = R + max(high[t-1] - preClose[t], preClose[t] - low[t-1]) + abs(DM[t]); c. 计算每一笔交易ASI: 如果SI[t]大于SI[t-1],则ASI[t] = ASI[t-1] + SI[t]; 如果SI[t]小于SI[t-1],则ASI[t] = ASI[t-1] + 0.5 * SI[t]; 如果SI[t]等于SI[t-1],则ASI[t] = ASI[t-1]; 其中,ASI[0] = 0。 以上是ASI指标的计算公式步骤,您可以使用Python编写代码,依次计算每一笔交易ASI值。希望对您有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coder加油!

感谢您的认可和支持!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值