线性代数系列讲解第四篇 矩阵的逆

矩阵的逆

1.概念

我们可以想想在数里面有倒数的概念,比如 2 ∗ 1 / 2 = 1 2*1/2 = 1 21/2=1。同样的想法,矩阵的逆也是类似的想法。其定义是:
A A − 1 = I AA^{-1}=I AA1=I
其中 A − 1 A^{-1} A1就是矩阵的逆。
当矩阵是方阵的时候,满足下面的方程
A A − 1 = I = A − 1 A AA^{-1}=I=A^{-1}A AA1=I=A1A
即矩阵的左逆等于矩阵的右逆。
证明: 可逆: A L A = A A R A_LA=AA_R ALA=AAR,使 A L = A R A_L=A_R AL=AR
A L = A L ( A A R ) = ( A L A ) A R = A R = I A_L = A_L(AA_R)=(A_LA)A_R = A_R=I AL=AL(AAR)=(ALA)AR=AR=I
当矩阵不是方阵的时候,矩阵的左逆不等于矩阵的右逆,本身矩阵左逆和右逆的大小就不一样了。
注意:不是所有矩阵都有逆矩阵。
如果矩阵可逆,我们一般叫做可逆矩阵,或者叫做非奇异矩阵(non-singular matrix)
如果矩阵不可逆,我们一般叫做不可逆矩阵,或者叫做奇异矩阵(singular matrix)

思考:
1.若 A A A, B B B均可逆,那么 A B AB AB的逆矩阵是多少?
解法:    ( A B ) ( B − 1 A − 1 ) = A ( B B − 1 ) A − 1 = I \;(AB)(B^{-1}A^{-1})=A(BB^{-1})A^{-1}=I (AB)(B1A1)=A(BB1)A1=I,    ( A B ) − 1 \;(AB)^{-1} (AB)1的逆矩阵为 B − 1 A − 1 B^{-1}A^{-1} B1A1
2.求 A T A^{T} AT的逆矩阵?
A A − 1 = I AA^{-1}=I AA1=I
( A − 1 ) T A T = I T = I (A^{-1})^{T}A^T=I^T=I (A1)TAT=IT=I
所以 ( A T ) − 1 = ( A − 1 ) T (A^{T})^{-1}=(A^{-1})^T (AT)1=(A1)T
3. 证明上节课的 d e t   A − 1 = 1 / d e t   A det\,A^{-1}=1/det\,A detA1=1/detA如下:
A − 1 A = I \qquad\qquad \qquad \qquad \qquad A^{-1}A=I A1A=I,则 ( d e t   A − 1 ) ( d e t   A ) = 1 (det\,A^{-1})(det\,A) = 1 (detA1)(detA)=1,结果为 d e t   A − 1 = 1 / d e t   A det\,A^{-1}=1/det\,A detA1=1/detA

2.求矩阵的逆

  1. Gauss-Jordan
    原理: [ A E ] ⟶ [ E A − 1 ] \begin{bmatrix}A&E\end{bmatrix}\longrightarrow\begin{bmatrix}E&A^{-1}\end{bmatrix} [
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值