什么是提示词工程,有哪些开源项目

在这里插入图片描述

提示词工程(Prompt Engineering)是一门专注于优化和开发提示词的技术,旨在提高人工智能模型(如大型语言模型LLM)的性能和用户体验。提示词工程涉及设计、优化和应用提示词,以帮助用户更好地与AI模型交互,提升任务完成效率和质量。以下是一些开源提示词工程项目的详细介绍:

  1. LangGPT
    LangGPT是由云中江于2023年5月开源的提示词工程工具,全称为“Language For GPT”。该项目通过结构化和模板化的方法,帮助用户编写高质量的AI提示词。LangGPT的特点包括降低学习门槛、提高效率,并已被百度、智谱、字节跳动等国内主流大模型平台广泛应用。此外,LangGPT还发展成为一个高质量提示词工程师学习交流社群,吸引了大量用户参与。

  2. PromptPerfect
    PromptPerfect是一款专业工具,旨在优化GPT-4、ChatGPT等主流AI模型的提示词。它支持自动优化、批量优化和API部署,能够将初步提示词转化为更专业、全面的提示词,从而提升生成效果。

  3. BlackFriday-GPTs-Prompts
    这是一个免费的GPT提示词资源库,由用户friuns2创建和维护。项目包含大量免费GPT提示词,覆盖编程、营销、学术、求职等多个领域。用户可以通过GitHub页面浏览、分类或搜索复制提示词,适用于初学者和AI爱好者。

  4. Prompt Range™(

### 关于 Python 项目中的提示词工程模板 在构建与 Python 项目相关的提示词工程Prompt Engineering)时,可以参考现有的开源资源以及社区实践。以下是针对这一主题的具体分析: #### 开源资源支持 GitHub 上存在多个专注于提示词工程的优秀仓库,这些仓库提供了丰富的模板和案例供开发者学习和借鉴[^2]。例如,“Awesome ChatGPT Prompts” 提供了一系列高质量的提示词设计范例,涵盖了多种应用场景。 #### 集成工具的支持 LangChain 是一种强大的框架,能够帮助开发人员更高效地管理复杂的工作流并优化模型的表现[^4]。通过 LangChain 的功能扩展,用户可以在 Python 中轻松实现对大语言模型的调优操作,从而提升生成内容的质量。 #### 实战技巧分享 为了进一步提高效率,在实际应用过程中还需要注意以下几点建议: - 明确目标:定义清晰的任务需求有助于减少歧义; - 数据准备:提供充分且准确的信息作为输入数据; - 结果验证:持续评估输出效果以确保满足预期标准; ```python from langchain import PromptTemplate, LLMChain from transformers import pipeline nlp_pipeline = pipeline('text-generation', model='distilgpt2') template = """You are a helpful assistant that generates python projects based on user descriptions. {description} """ prompt = PromptTemplate(template=template, input_variables=["description"]) llm_chain = LLMChain(prompt=prompt, llm=nlp_pipeline) result = llm_chain.run({"description": "Create an application to track daily expenses."}) print(result) ``` 上述代码片段展示了如何利用 `langchain` 和预训练好的 transformer 模型来创建基于描述自动生成 Python 工程的应用程序实例。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔王阿卡纳兹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值