提示词工程的痛点与变革
在大语言模型(LLM)蓬勃发展的今天,提示词工程(Prompt Engineering)已经成为AI应用开发中不可或缺的关键环节。然而,手动设计和优化提示词不仅耗时耗力,而且往往需要领域专家的深度参与。特别是在处理不同任务时,每次都需要重新设计和调整提示词,这种重复性的工作极大地限制了AI应用的快速迭代和规模化部署。
“
在这样的背景下,微软研究院的印度研究团队提出了一个革命性的解决方案——PromptWizard框架,这是一个完全自动化的提示词优化系统,它通过自我进化和自适应机制,能够自动生成高质量的任务特定提示词。
论文发表于2024年5月份,因为当时没有给出代码,所以一直没有引起足够的重视。这几天代码放出来了,主逻辑代码core_logic.py仅609行,但功能异常强大:
-
✨ 自动生成高质量提示词
-
🔄 自动生成推理链
-
👨💼 自动生成专家角色
-
🎯 自动生成任务意图
-
📝 自动生成多样化示例
-
⚡ 自动生成序列化优化
-
🔗 自动生成自生成推理链
-
🎨 自动生成任务意图和专家角色整合
具体的优化过程示例如图5所示,通过多轮迭代和优化,系统能够不断改进提示词的质量。
关于自我进化部分您可以看一看以下文章中的第二篇,Google DeepMind PROMPTBREEDER,2023年9月的论文,让AI系统不再被动地执行人类设计的提示,而是能够自主进化出更优秀的提示策略,从而大幅提升自身的推理能力和问题解决能力。
最终的实验结果(如表1所示)进一步证实了PromptWizard在各类任务上的卓越表现,特别是在算术推理等具有挑战性的任务中表现出色。
技术创新:自我进化的优化机制
PromptWizard最显著的技术创新在于其独特的自我进化机制。与现有的提示词优化方法相比,它采用了一种基于反馈的批评和综合过程,能够在探索和利用之间取得有效平衡。
🔑 关键步骤
- 提示词生成
-
处理高层次问题描述
-
利用大语言模型进行变异、评分
-
执行批评、综合、推理和验证
- 反馈驱动的优化
-
通过独特的反馈机制
-
对提示词进行批评和改进
-
实现系统性的质量提升
- 双重优化策略
-
优化提示词指令
-
优化上下文学习示例
-
全面提升模型性能
系统架构与工作流程
PromptWizard采用了一个结构清晰、层次分明的系统架构(如图1所示)。
📊 关键工作阶段
- 输入阶段
-
接收问题描述
-
初始提示词指令
-
训练样本输入
-
迭代优化阶段
“
通过迭代优化机制(如图3所示)对提示词进行持续改进。这个过程包含了批评和反馈的循环,确保每次迭代都能产生更好的结果。
-
序列化优化阶段
-
如图4所示,系统采用序列化方式优化指令和示例
-
更好地捕捉两者之间的关联性
- 示例生成与整合
-
生成合成示例
-
整合任务意图和专家角色
-
如图6和图7所示的流程
💫 性能优势
在实际性能表现上,PromptWizard展现出了显著的优势:
“
在GSM8k、AQUARAT和SVAMP等算术推理数据集上,PromptWizard展现出了优秀的性能。例如,在GSM8k数据集上,它实现了90%的准确率,比基线方法提高了15个百分点以上。
与现有方法相比,PromptWizard在API调用次数和token使用量上都实现了显著的降低:
-
每个任务平均仅需69次API调用
-
其他方法可能需要数千次调用
-
效率提升直接转化为成本节省
框架详解:五大核心组件
🛠️ 核心组件构成
-
提示词指令迭代优化
“
通过多轮迭代优化提示词指令,包含生成、评估、批评和改进的完整循环。
-
多样化示例选择
-
识别代表性示例
-
分类为正面和负面案例
-
确保场景覆盖完整性
- 序列化优化
-
有机结合提示词指令和示例优化
-
通过批评和综合生成新示例
-
形成良性优化循环
- 自生成推理链
-
自动生成详细推理链
-
增强问题解决能力
-
确保内容质量
- 任务意图和专家角色整合
-
提升模型性能
-
确保内容符合人类思维
-
保持专业标准
实验验证:卓越的性能表现
📈 性能指标
-
基准测试性能
“
在BIG-Bench指令归纳(BBII)数据集上,在19个具有挑战性的任务中的13个任务上取得最佳性能。
-
算术推理能力
-
GSM8k数据集:**90%**准确率
-
超越基线方法15个百分点
-
展现出色的推理能力
- 领域特定任务
-
BigBench Hard(BBH)数据集
-
23个挑战性任务
-
平均准确率88.1%
-
提升13个百分点
-
成本效益分析
“
API调用次数减少5-60倍**,显著节省计算资源和时间。**
实用价值:降本增效的实践应用
💎 核心优势
- 训练数据需求低
-
仅需5个训练样本
-
性能仅下降5个百分点
-
适合资源受限场景
- 适应性强
-
支持不同规模语言模型
-
从GPT-3.5到Llama-70B
-
保持稳定性能
- 成本优势
-
显著降低API调用次数
-
减少token使用量
-
平均仅需69次调用
- 可解释性强
-
提示词可读性好
-
便于理解和调试
-
提升工程效率
核心实现:关键算法与代码架构
看一下PromptWizard的代码,采用了模块化的设计架构,主要包含以下几个核心模块:
- 提示词优化引擎(promptopt):这是框架的核心模块,负责整个提示词优化过程的协调和管理。主要包含以下组件:
-
instantiate.py:实现了提示词优化的主要逻辑,包括提示词生成、评估和优化的核心算法
-
runner.py:负责优化过程的执行和控制
-
utils.py:提供各种辅助功能
-
constants.py:定义了系统使用的常量和配置参数
- 参数日志记录(paramlogger):这个模块负责记录和追踪优化过程中的各种参数变化,帮助理解和调试优化过程。它能够:
-
记录每次迭代的提示词变化
-
追踪性能指标的变化
-
保存中间结果供后续分析
- 通用功能模块(common):提供了框架所需的基础功能支持,包括:
-
数据处理和转换
-
模型接口封装
-
评估指标计算
-
错误处理机制
- 优化技术库(techniques):包含了各种提示词优化技术的具体实现,例如:
-
变异算法:生成提示词的不同变体
-
评分机制:评估提示词的效果
-
批评和综合:优化提示词质量
-
示例生成:创建和优化示例
系统的工作流程如下:
- 初始化阶段:
def initialize_optimization(problem_description, training_samples):
# 初始化优化器
optimizer = PromptOptimizer(
model_type="gpt-3.5-turbo",
max_iterations=5,
batch_size=25
)
# 设置初始提示词和示例
initial_prompt = generate_initial_prompt(problem_description)
examples = select_diverse_examples(training_samples)
return optimizer, initial_prompt, examples
- 参数日志记录(paramlogger)
-
记录迭代变化
-
追踪性能指标
-
保存中间结果
- 通用功能模块(common)
-
数据处理转换
-
模型接口封装
-
评估指标计算
- 优化技术库(techniques)
-
变异算法实现
-
评分机制设计
-
批评和综合优化
🔄 核心工作流程
def optimize_prompt(optimizer, initial_prompt, examples):
for iteration in range(optimizer.max_iterations):
variants = optimizer.generate_variants(initial_prompt)
scores = optimizer.evaluate_variants(variants, examples)
best_variant = select_best_variant(variants, scores)
feedback = optimizer.get_critique(best_variant)
improved_prompt = optimizer.synthesize(best_variant, feedback)
initial_prompt = improved_prompt
return improved_prompt
- 示例优化过程:
def optimize_examples(optimizer, prompt, initial_examples):
# 分析示例
example_feedback = optimizer.analyze_examples(initial_examples)
# 生成合成示例
synthetic_examples = optimizer.generate_examples(example_feedback)
# 验证示例质量
validated_examples = optimizer.validate_examples(synthetic_examples)
# 生成推理链
examples_with_reasoning = optimizer.add_reasoning_chains(validated_examples)
return examples_with_reasoning
- 任务意图和专家角色整合:
def integrate_intent_and_persona(optimizer, prompt, task_description):
# 提取任务意图
task_intent = optimizer.extract_intent(task_description)
# 生成专家角色
expert_persona = optimizer.generate_expert_persona(task_intent)
# 整合到提示词中
final_prompt = optimizer.integrate_components(
prompt,
task_intent,
expert_persona
)
return final_prompt
这种模块化的设计使得系统具有很好的可扩展性和维护性。每个模块都可以独立更新和优化,同时通过统一的接口进行协作。系统还实现了完整的错误处理和日志记录机制,确保了优化过程的可靠性和可追踪性。
def optimize_examples(optimizer, prompt, initial_examples):
# 分析示例
example_feedback = optimizer.analyze_examples(initial_examples)
# 生成合成示例
synthetic_examples = optimizer.generate_examples(example_feedback)
# 验证示例质量
validated_examples = optimizer.validate_examples(synthetic_examples)
# 生成推理链
examples_with_reasoning = optimizer.add_reasoning_chains(validated_examples)
return examples_with_reasoning
- 任务意图和专家角色整合:
def integrate_intent_and_persona(optimizer, prompt, task_description):
# 提取任务意图
task_intent = optimizer.extract_intent(task_description)
# 生成专家角色
expert_persona = optimizer.generate_expert_persona(task_intent)
# 整合到提示词中
final_prompt = optimizer.integrate_components(
prompt,
task_intent,
expert_persona
)
return final_prompt
这种模块化的设计使得系统具有很好的可扩展性和维护性。每个模块都可以独立更新和优化,同时通过统一的接口进行协作。系统还实现了完整的错误处理和日志记录机制,确保了优化过程的可靠性和可追踪性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。