论文阅读| ShellNet: Efficient Point Cloud Convolutional Neural Networks using Concentric Shells...

前言:点云分类和分割方向文章–ICCV2019 oral
page:[here]

ShellNet: Efficient Point Cloud Convolutional Neural Networks using Concentric Shells Statistics

引言

基于点(point-based)的点云处理方法在pointNet(纯全局特征)基础上,需要探索局部和全局特征,并平衡好网络复杂度、训练速度与准确性。先前的方法PointNet++, SpiderCNN, PointCNN分别 有着,网络复杂训练时间长收敛速度慢的缺点。
而我们提出了一种方法,shellNet,解决了这些缺点。
shellNet通过设计了一个同心球壳,通过球壳内的统计特征来将无序点变成有方向,从而可以进行带方向的卷积而不是无方向的mlp。
同时由于同心球壳可大可小,可以控制感受野,不用增加网络层数也能达到较大的感受野
这是shellNet方法在点云分类的取得的效果与训练时间迭代次数之间的关系
在这里插入图片描述

方法

shellnet的网络架构如下
在这里插入图片描述
其中最核心的设计,也就是基于点的shellconv是怎么实现的

问题引入
对点云的处理需要提取它的全局和局部特征
同时,点云是无序的,且不同区域密度不同
我们需要提出一种卷积来同一解决这种特点的点数据
问题分析
通常对于第n层的点云特征,提取某个点的局部特征,则集合邻域特征对其卷积就行
在这里插入图片描述
然而,这里的卷积是带有方向的,w只分配给固定位置的点。
即,权值必须适合于训练,即w必须离散成一个固定大小的可训练参数向量。为每个点定义w是不实际的,因为这些点不是有序的。原文如下:

The weights have to be suitable for training, i.e., w has to be discretized into a fixed size vector of trainable parameters. Defining w for each point is not practical because the points are not ordered.

为了让无序的点分配上有序的卷积权重,这里利于邻域来划分区域,即利用同心球划分区域,然后用一个固定的统计特征替代同一同心球中的特征,这样得到的特征就是有序的
在这里插入图片描述
而同一同心球中的统计特征由最大池化得到
在这里插入图片描述
因此,shellconv的实现可由下图所示
在这里插入图片描述
问题解决
最后,在实现上,通过计算邻点之间的距离,对所有邻点进行排序。并根据它们到中心的距离,从内到外,将点分配到壳上。我们给每个壳分配一个固定数量的点,也就是说,每个壳分配n个点,首先从中心长一个球体,直到n个点落在球体内部。这是最里面的外壳。然后球体继续生长,收集另n个点形成第二个壳,以此类推。
这样的操作也很容易实现,而且开销也很低。
在这里插入图片描述
在这里插入图片描述

实验

ModelNet40分类结果
在这里插入图片描述
不同数据集分割结果
在这里插入图片描述
参数量和计算量,训练推理时间比较
在这里插入图片描述

结论

文章写得很清晰,虽说代码也是tensorflow实现的,但是光看文章已经可以理解怎么实现的了

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制,可以提高模型的性能和效率。它通过对每个通道的特征图进行加权,使得网络可以更好地学习到重要的特征。ECA-Net的设计简单,易于实现,并且可以与各种深度卷积神经网络结构相结合使用。 ### 回答2: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制。 ECA-Net通过提出一种名为"Efficient Channel Attention"(ECA)的注意力机制,来增强深度卷积神经网络的性能。通道注意力是一种用于自适应调整不同通道的特征响应权重的机制,有助于网络更好地理解和利用输入数据的特征表示。 相比于以往的注意力机制,ECA-Net采用了一种高效且可扩展的方式来计算通道注意力。它不需要生成任何中间的注意力映射,而是通过利用自适应全局平均池化运算直接计算出通道注意力权重。这种方法极大地降低了计算和存储开销,使得ECA-Net在实际应用中更具实用性。 在进行通道注意力计算时,ECA-Net引入了两个重要的参数:G和K。其中,G表示每个通道注意力的计算要考虑的特征图的大小;K是用于精细控制计算量和模型性能之间平衡的超参数。 ECA-Net在各种视觉任务中的实验结果表明,在相同的模型结构和计算资源下,它能够显著提升网络的性能。ECA-Net对不同层级的特征表示都有显著的改进,能够更好地捕捉不同特征之间的关联和重要性。 总之,ECA-Net提供了一种高效并且可扩展的通道注意力机制,可以有效提升深度卷积神经网络的性能。它在计算和存储开销上的优势使得它成为一个非常有价值的工具,可在各种计算资源受限的应用中广泛应用。 ### 回答3: "eca-net: efficient channel attention for deep convolutional neural networks" 是一种用于深度卷积神经网络的高效通道注意力模块。这一模块旨在提高网络对不同通道(特征)之间的关联性的理解能力,以提升网络性能。 该方法通过引入了一个新的注意力机制来实现高效的通道注意力。传统的通道注意力机制通常是基于全局池化操作来计算通道之间的关联性,这种方法需要较高的计算成本。而ECA-Net则通过引入一个参数化的卷积核来计算通道之间的关联性,可以显著减少计算量。 具体来说,ECA-Net使用了一维自适应卷积(adaptive convolution)来计算通道注意力。自适应卷积核根据通道特征的统计信息来调整自身的权重,从而自适应地计算每个通道的注意力权重。这样就可以根据每个通道的信息贡献度来调整其权重,提高网络的泛化能力和性能。 ECA-Net在各种图像分类任务中进行了实验证明了其有效性。实验结果显示,ECA-Net在相同计算预算下,相比其他通道注意力方法,可以获得更高的分类精度。同时,ECA-Net还具有较少的额外计算成本和模型大小,使得其在实际应用中更加高效。 总结而言,"eca-net: efficient channel attention for deep convolutional neural networks" 提出了一种高效通道注意力方法,通过引入自适应卷积核来计算通道注意力,从而提高了深度卷积神经网络的性能。这一方法在实验中取得了良好的效果,并且具有较少的计算成本和模型大小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值