SEAFORMER SQUEEZE-ENHANCED AXIAL TRANSFORMER FOR MOBILE SEMANTIC SEGMENTATION【即插即用】

SeaFormer是一种新型Transformer架构,专为移动设备上的高分辨率语义分割而设计。通过创新的挤压轴和细节增强机制,SeaFormer在保持高性能的同时降低计算成本和内存需求,且在移动友好的比赛中超越了竞争者。同时,它还展示了在图像分类上的多功能潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SEAFORMER: SQUEEZE-ENHANCED AXIAL TRANSFORMER FOR MOBILE SEMANTIC SEGMENTATION

Seaformer:用于移动语义分割的挤压增强轴向TRANS。

https://github.com/fudan-zvg/SeaFormer

ICLR 2023

摘要

自从引入VIT以来,许多计算机视觉任务(例如,语义分割)的前景一直由cnn压倒性地主导,最近发生了重大变革。然而,计算成本和内存需求使得这些方法不适合移动设备,特别是对于高分辨率的逐像素语义分割任务。本文介绍了一种新的用于移动语义分割的挤压增强轴向Transformer(SeaFormer)方法。具体来说,我们设计了一个通用的注意力块,其特点是挤压轴和细节增强的配方。它可以进一步用于创建一系列具有卓越成本效益的骨干体系结构。再加上一个轻分割头,我们在基于arm的移动设备上在ADE20K和cityscape数据集上实现了分割精度和延迟之间的最佳权衡。关键的是,我们以更好的性能和更低的延迟击败了移动友好型竞争对手和基于transformer的对手,而且没有花哨的东西。除了语义分割之外,我们进一步将提出的SeaFormer架构应用于图像分类问题,展示了作为多功能移动友好骨干网的潜力。

框架

在这里插入图片描述

### 循环挤压-激励上下文聚合网络在单张图像去雨中的应用 #### 网络结构概述 Recurrent Squeeze-and-Excitation Context Aggregation Network (RESCAN) 是一种专门针对单张图像去雨设计的深度学习模型。该网络旨在通过递归机制有效去除图像中的雨痕,从而提高图像质量[^3]。 #### 特征提取模块 输入含雨图像后,首先利用改进版 DenseNet 提取全局特征。此版本的 DenseNet 移除了转换层(1 Conv + 1 Pooling),因此不会执行下采样操作,有助于保留更多细节信息。 #### 子网工作流程 所提取的整体特征被送入多个并行工作的子网络中。每个子网络负责估算特定尺度下的雨纹图 \( R_i \),并通过累加获得当前阶段总的雨纹图。随后,将原图与所得雨纹图做减法运算得出初步清理后的图片。上述过程会迭代多次,在每一新轮次里以前一轮处理过的影像作为输入继续优化直至最终产出完全无雨斑点的照片。 #### 关键组件分析 - **循环卷积层**:为了更好地捕捉时间序列特性以及增强记忆能力,采用了具备 ResNet 快捷链接特性的循环卷积单元。 - **Squeeze-and-Excitation (SE)**:引入 SE 结构可以自动调整通道间权重分配,使得重要区域获得更多关注资源,进而改善视觉表现力[^5]。 - **未使用 Batch Normalization**:考虑到 BN 可能破坏原有空间关联性,并且增加额外计算负担,故而在本框架内舍弃了这项技术。实验证明这样做不仅提升了性能指标还减少了约40% 的 GPU 显存占用量[^4]。 ```python import torch.nn as nn class RESCAN(nn.Module): def __init__(self, num_stages=4): super(RESCAN, self).__init__() # Define feature extraction module based on modified DenseNet without transition layers # Define recurrent sub-networks using recursive convolutional units with ResNet shortcuts # Implement squeeze-and-excitation mechanism to enhance channel-wise attention def forward(self, x): features = self.feature_extraction(x) rain_maps = [] clean_image = None for stage in range(num_stages): current_rain_map = self.sub_network(features) rain_maps.append(current_rain_map) if stage == 0: clean_image = x - sum(rain_maps) else: clean_image = clean_image - sum(rain_maps[stage:]) return clean_image ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值