AI大模型时代,数据管理“上桌了”

随着生成式AI技术的飞速进步,AI大模型的广泛应用,让企业意识到数据管理的重要性。过去企业关注的是AI模型的优劣,现在则更为聚焦如何有效管理数据、最大化数据价值。数据不再是存储资源,而是企业的核心竞争力所在。大模型的“智能”能力需要优质数据的支撑,而数据管理能力则成为新一轮企业竞争的关键。

从被动到主动:数据管理重要性凸显

早期,大多数企业对数据管理的投入有限,更多是依赖商业智能(BI)工具,获得业务数据的简单洞察。然而,AI大模型的出现使企业重新审视数据管理,开始从被动的“收集”转向主动“管理”。企业开始积极建设数据资源管理运营平台、以便充分发挥数据在企业内外的流通价值。数据管理逐步走向前台,成为企业发展的核心投入之一。

Data+AI融合:赋能数据管理新模式

在生成式AI时代,Data+AI或“数智融合”已成为数据管理的核心方向。数据供应方和持有方越来越注重“AI-ready”数据集,确保数据在质量、格式和标注上都符合AI应用需求。例如,智能分类、自动清洗与标注等AI技术的加入,有效提高了数据处理效率,减少了人工干预带来的成本和错误。这种智能数据管理能力优化了数据利用率,为企业带来新的竞争优势。

在大模型时代,企业需要从数据沉淀、数智融合和数据治理三方面着手,打造“三位一体”的数据管理能力:

  • 数据沉淀:完善数据基础设施,建立数据湖、数据仓库等系统,确保企业数据在内部高效流通;

  • 数智融合:建设支持AI计算的架构,如引入智能处理引擎,提升数据质量和存储效率;

  • 数据流通:加强数据质量和安全管理,建立健全的数据共享机制,使数据管理从单一管理走向资产化和产品化。

数据要素应用推进,释放数据价值

国家通过政策推动数据要素发展,加速了企业的数据资产化进程。以数据交易和数据资产为核心的探索,以及数据管理能力成熟度模型(DCMM)的推广,助力企业提升数据管理水平。企业在政策支持下加大对数据安全、质量和共享机制的关注,确保数据在不同应用场景中能实现合规与高效流通,进一步放大数据资产的应用价值。

企业释放数据价值的路径分为三个阶段:业务洞察、决策优化和流通赋能。在业务洞察阶段,企业通过数据管理获得市场和运营的基本见解;决策优化阶段则借助数据来支持管理层的精确决策;流通赋能阶段则让数据在跨部门、跨系统间实现高效共享,真正赋能业务和市场拓展。这种逐步释放数据价值的模式是现代企业必不可少的增长途径。

AI大模型时代带来了数据管理的全新需求。企业通过完善数据管理,不仅提升了大模型应用的效果,更在激烈的市场竞争中占据了数据制胜的先机。在未来,数据管理能力将成为每个企业的必备基础,是推动创新和释放数据价值的核心所在。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值