Gradio从入门到精通(4)---接口类ChatInterface


前言

上一节介绍了interface类,本节介绍Gradio 的ChatInterface类,ChatInterface 是 Gradio 用于创建聊天机器人 UI 的高级抽象,允许您通过几行代码围绕聊天机器人模型创建基于 Web 的演示。只需要一个参数:fn,它采用一个函数,根据用户输入和聊天历史记录来控制聊天机器人的响应。其他参数可用于控制演示的外观和行为。

一、ChatInterface初始化参数介绍

类别参数描述
核心参数fn需要包装的用户界面函数,接收messagehistory参数,返回字符串响应
chatbot定义聊天机器人的组件,可传入gr.Chatbot实例或字符串名称
textbox定义文本输入框的组件,可传入gr.Textbox实例或字符串名称
界面和样式参数title聊天界面的标题
description聊天界面的描述
theme聊天界面的主题
css自定义CSS样式
examples示例输入,帮助用户了解如何与聊天机器人交互
cache_examples是否缓存示例输入
控制按钮参数submit_btn提交按钮的文本或禁用状态
retry_btn重试按钮的文本或禁用状态
undo_btn撤销按钮的文本或禁用状态
clear_btn清除按钮的文本或禁用状态
多模态功能参数multimodal是否启用多模态功能,允许上传图片或文件
additional_inputs添加额外的输入组件,可传入组件实例或字符串名称
additional_inputs_accordion_name设置额外输入组件的手风琴标签名称
其他参数stop_btn自定义“停止”按钮的外观和行为
placeholder聊天机器人输入框的占位符文本
height聊天机器人组件的高度

二、示例

代码如下(示例):随机回答,通过这个示例,可以看到ChatInterface的基本使用方法

import random
import gradio as gr

def random_response(message, history):
    return random.choice(["Yes", "No"])

demo = gr.ChatInterface(random_response)

if __name__ == "__main__":
    demo.launch()

在这里插入图片描述

代码如下(示例):多模态

import gradio as gr


def echo(message, history):
    return message["text"]


demo = gr.ChatInterface(
    fn=echo,
    examples=[{"text": "hello"}, {"text": "hola"}, {"text": "merhaba"}],
    title="Echo Bot",
    multimodal=True,
)
demo.launch()

在这里插入图片描述


总结

本章介绍了ChatInterface 接口类,有了他,可以通过几行代码围绕聊天机器人模型创建基于 Web 的演示。

### Stable Diffusion WebUI入门教程 #### 一、下载与安装 为了开始使用Stable Diffusion WebUI (AUTOMATIC1111),需先完成软件的下载和安装过程。该工具不仅支持常见的NVIDIA GPU,还能够在Intel CPU以及集成/独立GPU上运行,这得益于Intel分发的OpenVINO工具包的支持[^2]。 #### 二、初步探索界面布局 启动程序后,用户会面对一个直观而复杂的图形化界面。此界面专为满足高级用户的图像生成需求所设计,提供了一系列强大且灵活的功能选项。对于初学者而言,建议按照官方提供的详细使用指南逐步学习各个部分的操作方式[^1]。 #### 三、创建第一个项目 当环境搭建完毕之后,就可以尝试创建自己的首个作品了。此时应该参照具体的实例来练习不同参数下的效果变化,从而加深对各项设定的理解程度。例如,在处理非首次生成的情况下启用色彩校正功能可以帮助改善颜色表现力,防止出现过度褪色的情况[^4]。 #### 四、深入挖掘特性 随着技能水平逐渐提高,可以进一步探究更多进阶特性和优化策略。比如调整采样器类型、迭代次数等核心参数;利用LoRA模型扩展创造力边界;或是借助第三方插件实现个性化定制等功能。这些都将有助于提升最终产出的质量并开拓新的创作可能性。 ```python # Python脚本用于自动化某些任务或批量处理图片 import gradio as gd from modules import script_callbacks, shared def custom_function(image_input): # 自定义逻辑... pass script_callbacks.on_after_component(custom_function) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶与花语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值