OpenMV——色块追踪

Python知识:

1.给Python的列表赋值:

定义一个元组时就是 元组a = (1,2,…)
元组中可以只有一个元素,但是就必须要加一个 “ , ”
如 a = (2,)

而列表的定义和元组类似,只是把()换成[]:

#那么下面的colour_1 ~ 3属于元组,只能进行一次赋值就是初始化的时候,之后不允许修改
colour_1 = (51, 17, -4, -65, 45, -53)
cplour_2 = (51, 17, -4, -65, 41, -51)
cplour_3 = (2, 17, -4, -65, 41, -51)
#而thresholds是一个列表,这时候这个列表就有了三个颜色的阈值信息,与元组不同列表后续能够进行添加和删除
thresholds = [cplour_1,cplour_2,
### 使用OpenMV创建视觉板 #### 安装与配置环境 为了使用OpenMV实现视觉板功能,需先安装并配置开发环境。确保已下载最新版本的OpenMV IDE,并将其连接到计算机上运行的操作系统中[^1]。 #### 初始化设置 启动OpenMV IDE之后,通过USB线缆将OpenMV相机模块连接至电脑端口,在IDE界面内选择对应的COM端口号完成设备识别过程。随后可编写Python脚本来控制摄像头采集图像数据流以及执行特定算法处理任务。 ```python import sensor # 导入传感器库用于初始化摄像头参数 sensor.reset() # 复位并重新初始化感光元件 sensor.set_pixformat(sensor.RGB565) # 设置像素格式为RGB颜色空间表示法 sensor.set_framesize(sensor.QVGA) # 设定帧大小QVGA(320x240分辨率) ``` #### 加载预训练模型或自定义训练 对于复杂场景下的物体检测分类等问题,可以加载官方提供的预训练神经网络权重文件来快速部署应用;如果应用场景较为特殊,则可根据需求收集样本集自行训练适合当前项目的深度学习模型。 ```python from tensorflow import keras model = keras.models.load_model('path_to_pretrained_model') # 载入已有模型架构及参数 # 或者构建新的卷积层、全连接层等组件搭建个人专属CNN框架... ``` #### 实现具体功能逻辑 基于上述准备工作基础上进一步完善程序代码以达成预期目标——即制作一个具备多种用途(如人脸识别追踪、色彩形状匹配检索等功能)于一体的智能化视觉交互平台。下面给出一段简单示例演示如何捕捉画面中的红色区域轮廓线条: ```python while(True): img = sensor.snapshot() # 获取实时视频帧图片对象 blobs = img.find_blobs([(100,255),(80,127),(80,127)]) # 查找满足条件的颜色块集合 if blobs: largest_blob = max(blobs,key=lambda b:b.area()) # 找出面积最大的一块作为跟踪目标 img.draw_rectangle(largest_blob.rect(),color=(255,0,0)) # 绘制矩形框标记位置范围 print("Red blob detected!") # 输出提示信息表明发现指定特征物 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无极帝国C++工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值