论文阅读:InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering

该文提出了一种基于射线熵最小化的神经辐射场重建方法,旨在解决少视角下可能的重建不一致性和训练图像冗余视点导致的问题。通过引入熵约束和空间平滑性,以及使用KL散度进行密度正则化,优化模型在处理未见过的视角时的表现。
摘要由CSDN通过智能技术生成

中文标题:基于射线熵最小化的少视角神经辐射场

创新点

  • 通过对每条射线密度施加熵约束来最小化稀疏视角带来的潜在重建不一致性。
  • 此外,为了缓解所有训练图像都是从几乎冗余的视点获取时潜在的退化问题,我们进一步将空间平滑性约束纳入到估计的图像中,通过限制从具有略微不同的视点的额外光线中获得的信息。

提出的方法

通过射线熵最小实现正则

  • 归一化射线密度公式 α i \alpha_i αi 是射线不透明度

在这里插入图片描述 在这里插入图片描述

  • 射线熵:定义一个离散射线密度函数的熵
    在这里插入图片描述
  • R s 与 R u R_s与R_u RsRu代表seen与unseen视角下的射线集。
  • 忽略非命中射线:射线熵最小化的一个问题是,虽然一些射线没有击中场景中的任何物体,但它们必须具有低熵。为了防止这个问题引起的潜在伪影,我们简单地忽略了低密度射线的熵最小化。
    在这里插入图片描述
  • 射线熵损失

在这里插入图片描述

  • 模型无法使用来自看不见图像的光线,而模型可以利用它们,因为熵正则化不需要基本真相。

正则信息增益减少

  • 使用KL散度约束相近的条射线之间的密度。
    在这里插入图片描述

参考文献

[1] Kim M, Seo S, Han B. Infonerf: Ray entropy minimization for few-shot neural volume rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 12912-12921.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlueagleAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值