引言
- 卷积概念
- 常见算子
1、卷积概念
卷积是图像处理中一个操作,是kernel在图像的每个像素上的操作。
Kernel本质上一个固定大小的矩阵数组,其中心点称为锚点(anchor point)
卷积的工作方式:
把kernel放到像素数组之上,求锚点周围覆盖的像素乘积之和(包括锚点),用来替换锚点覆盖下像素点值称为卷积处理。数学表达如下:
kernel是从左到右,从上到下的
2、常见算子
Robert算子(X、Y) Sobel算子
3、代码演示
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace cv;
int main(int argc, char** argv) {
Mat src, dst,dst_x,dst_y;
int ksize = 0;
src = imread("F:/vs_test/image/star.jpg");
if (!src.data) {
printf("could not load image...\n ");
return -1;
}
char INPUT_WIN[] = "input image";
char OUTPUT_WIN[] = "Robert X";
namedWindow(INPUT_WIN, CV_WINDOW_AUTOSIZE);
//namedWindow(OUTPUT_WIN, CV_WINDOW_AUTOSIZE);
//namedWindow("Robert Y", CV_WINDOW_AUTOSIZE);
imshow(INPUT_WIN, src);
//Robert X方向
//Mat kernel_x = (Mat_<int>(2, 2) << 1, 0, 0, -1);
//Sobel X方向
//Mat kernel_x = (Mat_<int>(3, 3) << -1, 0, 1, -2, 0, 2, -1, 0, 1);
//filter2D(src, dst_x, -1, kernel_x, Point(-1, -1), 0.0);
//Robert Y方向
//Mat kernel_y = (Mat_<int>(2, 2) << 0, 1, -1, 0);
//Sobel Y方向
//Mat kernel_y = (Mat_<int>(3, 3) << -1, -2, -1, 0, 0, 0, 1, 2, 1);
//拉普拉斯算子
Mat kernel_y = (Mat_<int>(3, 3) << 0, -1, 0, -1, 4, -1, 0, -1, 0);
filter2D(src, dst_y, -1, kernel_y, Point(-1, -1), 0.0);
//imshow(OUTPUT_WIN, dst_x);
//imshow("Robert Y", dst_y);
//imshow("Sobel X", dst_x);
//imshow("Sobel Y", dst_y);
//addWeighted(dst_x, 0.5, dst_y, 0.5, 0, dst,-1);
imshow("output", dst_y);
waitKey(0);
return 0;
}
输入图片:
robert算子:
sobel算子:
拉普拉斯算子: