opencv 常见算子

引言

  • 卷积概念
  • 常见算子

1、卷积概念

卷积是图像处理中一个操作,是kernel在图像的每个像素上的操作。

Kernel本质上一个固定大小的矩阵数组,其中心点称为锚点(anchor point)

 卷积的工作方式:

kernel放到像素数组之上,求锚点周围覆盖的像素乘积之和(包括锚点),用来替换锚点覆盖下像素点值称为卷积处理。数学表达如下:

H(x,y)=\sum_{​{i=0}}^{M_{i}-1}\sum_{​{j=0}}^{M_{j}-1}I(x+i-a_{i},y+i-a_{j})K(i,j)

kernel是从左到右,从上到下的

2、常见算子

            

                  Robert算子(X、Y)                                              Sobel算子

拉普拉斯算子

 3、代码演示

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
int main(int argc, char** argv) {
	Mat src, dst,dst_x,dst_y;
	int ksize = 0;

	src = imread("F:/vs_test/image/star.jpg");
	if (!src.data) { 
		printf("could not load image...\n ");
		return -1;
	}

	char INPUT_WIN[] = "input image";
	char OUTPUT_WIN[] = "Robert X";
	namedWindow(INPUT_WIN, CV_WINDOW_AUTOSIZE);
	//namedWindow(OUTPUT_WIN, CV_WINDOW_AUTOSIZE);
	//namedWindow("Robert Y", CV_WINDOW_AUTOSIZE);
	imshow(INPUT_WIN, src);

	//Robert X方向
	//Mat kernel_x = (Mat_<int>(2, 2) << 1, 0, 0, -1);
	//Sobel X方向
	//Mat kernel_x = (Mat_<int>(3, 3) << -1, 0, 1, -2, 0, 2, -1, 0, 1);
	//filter2D(src, dst_x, -1, kernel_x, Point(-1, -1), 0.0);

	//Robert Y方向
	//Mat kernel_y = (Mat_<int>(2, 2) << 0, 1, -1, 0);
	//Sobel Y方向
	//Mat kernel_y = (Mat_<int>(3, 3) << -1, -2, -1, 0, 0, 0, 1, 2, 1);

	//拉普拉斯算子
	Mat kernel_y = (Mat_<int>(3, 3) << 0, -1, 0, -1, 4, -1, 0, -1, 0);
	filter2D(src, dst_y, -1, kernel_y, Point(-1, -1), 0.0);

	//imshow(OUTPUT_WIN, dst_x);
	//imshow("Robert Y", dst_y);
	//imshow("Sobel X", dst_x);
	//imshow("Sobel Y", dst_y);

	//addWeighted(dst_x, 0.5, dst_y, 0.5, 0, dst,-1);
	imshow("output", dst_y);

	waitKey(0);
	return 0;
}

输入图片:

robert算子:

      

 sobel算子:

    

 拉普拉斯算子:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值