我们先了解久期来由:我们知道有许多因素影响着人们对债券价格的评价,比如票面利率 、市场利率、到期时间、变现能力等。通常票面利率较高的债券价格波动要大于票面利率较低的债券的价格波动,该结论是基于其他因素不变,只有票面利率作为变量。如果期限和票面利率在不同的债券组合比较时,我们需要一种模型来衡量。如一种期限较长的债券,但却有较高的票面利率,那么票面利率对价格的影响将部分被期限所抵消。弗雷德提出了找出一个综合前面几个因素的概括性指标来衡量债券价格的敏感度,久期将债券的票面利率,利率支付次数,到期期限以及到期收益率综合在一起形成一个以时间单位命名的概括性衡量标准,从而大大提高了债券评价的准确性。
久期相关解释与说明:也称为持续期。以未来时间发生的现金流,按照目前的收益率折现成的现值,再用每笔乘以现在距该笔现金流发生点的时间年限,进行求和,以总和除以债券目前价格,得到是久期。债券平均有效期的一个度量。它被定义为到每一债券距离到期的时间的加权平均值,其权重与支付的现值成比例。因此我们可以看出决定久期即影响债券对市场利率变化的敏感性包括三要素:到期时间、息票利率和到期收益率。为什么说久期与市场利率由关,是因为债券价格与市场利率呈反比,市场利率上升,债券潜在投资者就要求与市场利率相一致的到期收益率,那么价格下降,即到期收益率向市场看齐。不同债券价格对市场利率变动的敏感性不一样。债券久期是衡量这种敏感性最重要和最主要的标准。久期等于利率变动一个单位所引起的价格变动。如市场利率变动1%,债券的价格变动3%,则久期是3。
计算公式如下:
其中:D是马考勒久期,P是当前价格,PV(Ct)是债券未来第t期现金流(利息或资本)额现值,ct是债券未来第t次支付的现金流(利息或本金),T是债券在存续期内支付现金流额次数,t是第t次现金流支付的时间。y是债券的到期收益率。
债券组合的马考勒久期计算公式如下:
其中:Dp是债券组合马考勒久期,Wi表示债券i的市场价值占该债券组合市场 价值的比重,Di表示债券i的马考勒久期,k表示债券组合中的债券个数。
马考勒久期与债券价格的关系
假设现在时间是0时刻,假设连续复利,债券持有者在ti时刻受收到额支付为ci(1<=i<=n),则债券价格P和连续复利收益率为y的关系为:
以下讲述几种久期的变形:修正久期
修正久期:当收益率采用一年计一次复利的形式时,人们常用修正的久期来代替马考勒久期。
修正久期公式为:
凸度:凸度是指债券价格变动率与收益率变动关系曲线的曲度。马考勒久期等于债券价格对收益率的一级导数的绝对值除以债券价格,凸度可以定义为债券价格对收益率二阶导数除以价格。即
久期在债券中的作用:
在债券分析中,久期已经超越了时间的概念。修正久期大的债券,利率上升所引起价格下降幅度就越大,而利率下降所引起的债券价格上升幅度也越大。可见,同等要素条件下,修正久期小的债券比修正久期大的债券抗利率上升风险能力强,但抗利率下降风险能力较弱。正是久期的上述特征给我们的债券投资提供了参照。当我们判断当前的利率水平存在上升可能,就可以集中投资于短期品种、缩短债券久期;而当我们判断当前的利率水平有可能下降,则拉长债券久期、加大长期投资的投资,这就可以帮助我们在债市的上涨中获得更高的溢价。需要说明的是,久期的概念不仅广泛应用在个券上,而且广泛应用在债券的投资组合中。一个长久期的债券和一个短久期的债券可以组合一个中等久期的债券投资组合,而增加某一类债券的投资比例又可以使该组合的久期向该类债券的久期倾斜。所以,当投资者在进行大资金运作时,准确判断好未来的利率走势后,然后就是确定债券投资组合的久期,在该久期确定的情况下,灵活调整各类债券的权重,基本上就能达到预期的效果。久期是一种测度债券发生现金流的平均期限的方法。由于债券价格敏感性会随着到期时间的增长而增加,久期也可用来测度债券对利率变化的敏感性,根据债券的每次息票利息或本金支付时间的加权平均来计算久期。久期的计算就当是在算加权平均数。其中变量是时间,权数是每一期的现金流,价格就相当于是权数的总和(因为价格是用现金流贴现算出来的)。这样一来,久期的计算公式就是一个加权平均数的公式了,因此,它可以被看成是收回成本的平均时间。
利用久期控制利率风险
在债券投资里,久期可以被用来衡量债券或者债券组合的利率风险,一般来说,久期和债券的到期收益率成反比,和债券的剩余年限及票面利率成正比。对于一个普通的附息债券,如果债券的票面利率和其当前的收益率相当的话,该债券的久期就等于其剩余年限当一个债券是贴现发行的无票面利率债券,那么该债券的剩余年限就是其久期。债券的久期越大,利率的变化对该债券价格的影响也越大,因此风险也越大。在降息时,久期大的债券上升幅度较大;在升息时,久期大的债券下跌的幅度也较大。因此,预期未来升息时,可选择久期小的债券。在债券分析中久期已经超越了时间的概念,投资者更多地把它用来衡量债券价格变动对利率变化的敏感度,并且经过一定的修正,以使其能精确地量化利率变动给债券价格造成的影响。修正久期越大,债券价格对收益率的变动就越敏感,收益率上升所引起的债券价格下降幅度就越大,而收益率下降所引起的债券价格上升幅度也越大。
债券对利率变动的反应特征如下:债券价格与利率变化反向变动;在给定利率变化水平下,长期债券价格变动较大,因此债券价格变化直接与期限有关;随着到期时间的增加,债券对于利率变化的敏感度是以一个递减的速度增长;由相同幅度的到期收益率的绝对变化带来的价格变化是非对称的,具体来说,在期限给定条件下,到期收益率降低引起的价格上升,大于到期收益率上升引相同幅度起的价格下降;票息高的债券比那些票息低的债券对利率的敏感性要低。
利用久期进行免疫
所谓免疫,就是构建这样的一个投资组合,在组合内部,利率变化对债券价格的影响可以互相抵消,因此组合在整体上对利率不具有敏感性。而构建这样组合的基本方法就是通过久期的匹配,使附息债券可以精确地近似于一只零息债券。利用久期进行免疫是一种消极的投资策略,组合管理者并不是通过利率预测去追求超额报酬,而只是通过组合的构建,在回避利率波动风险的条件下实现既定的收益率目标。在组合品种的设计中,除了国债可以选入组合外,部分收益率较高的企业债券及金融债券也能加入投资组合,条件是控制好匹配的久期。
但是,免疫策略本身带有一定的假设条件,比如收益率曲线的变动不是很大,到期收益率的高低与市场利率的变化之间有一个平衡点,一旦收益率确实发生了很大的变动,则投资组合不再具有免疫作用,需要进行再免疫,或是再平衡;其次,免疫严格限定了到期支付日,对于那些支付或终止期不能确定的投资项目而言并不是最优;再次,投资组合的免疫作用仅对于即期利率的平行移动有效,对于其他变动,需要进一步拓展应用。
利用久期优化投资组合
进行免疫后的投资组合,虽然降低了利率波动的风险,但是组合的收益率却会偏低。为了实现在免疫的同时也能增加投资的收益率,可以使用回购放大的办法,来改变某一个债券的久期,然后修改免疫方程式,找到新的免疫组合比例,这样就可以提高组合的收益率。但是,在回购放大操作的同时,投资风险也在同步放大,因此要严格控制放大操作的比例。