我们使用以下六个分类标准或者特征来分析本文的研究主题:
1. 分割级别:
- 语义分割: 关注的是理解整个场景,通过给每个像素分配特定的语义类别,例如天空、道路、人、建筑等。 就像给拼图的每一块单独贴标签一样。 想像一下画一幅壁画,每一笔都为更大的画面做出贡献。
- 实例分割: 这不仅仅是识别类别,而是将场景中的各个对象隔离出来。 它识别并描绘每个对象实例的边界,就像将野生动物图片中的不同动物分开一样。 想像一下放大壁画并勾勒出每个独特生物的轮廓。
- 全景分割: 这结合了语义分割和实例分割,从而对场景有更全面的理解。 它区分对象实例和“stuff”区域,例如地面或背景。 想像一下为壁画添加细节,突出每个动物的独特特征并将它们与周围环境区分开来。
2. 架构设计:
- 专用架构: 这些模型是专门为单个分割任务设计的。 例如,Mask R-CNN 主要是一个实例分割模型,而 DeepLab 主要是一个语义分割模型。 它们在预定用途上工作良好,但缺乏通用性。 想像一下为不同的绘画任务使用不同的工具 - 大面积的刷子、细节的细尖笔等。
- 全景架构: 这些架构试图在一个框架内统一语义和实例分割。 虽然方便,但它们通常需要对每个任务进行单