CVPR 2023: OneFormer One Transformer To Rule Universal Image Segmentation

OneFormer是一种新型的深度学习模型,它采用Transformer架构,旨在通过单一模型和训练过程实现语义、实例和全景分割的先进性能。通过多任务训练和动态任务令牌方法,OneFormer在不同分割任务间灵活切换,提高整体泛化能力。对比损失的使用增强了任务间的区分度,统一的性能指标展示其在图像分割领域的全面能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们使用以下六个分类标准或者特征来分析本文的研究主题:

1. 分割级别:

  • 语义分割: 关注的是理解整个场景,通过给每个像素分配特定的语义类别,例如天空、道路、人、建筑等。 就像给拼图的每一块单独贴标签一样。 想像一下画一幅壁画,每一笔都为更大的画面做出贡献。
  • 实例分割: 这不仅仅是识别类别,而是将场景中的各个对象隔离出来。 它识别并描绘每个对象实例的边界,就像将野生动物图片中的不同动物分开一样。 想像一下放大壁画并勾勒出每个独特生物的轮廓。
  • 全景分割: 这结合了语义分割和实例分割,从而对场景有更全面的理解。 它区分对象实例和“stuff”区域,例如地面或背景。 想像一下为壁画添加细节,突出每个动物的独特特征并将它们与周围环境区分开来。

2. 架构设计:

  • 专用架构: 这些模型是专门为单个分割任务设计的。 例如,Mask R-CNN 主要是一个实例分割模型,而 DeepLab 主要是一个语义分割模型。 它们在预定用途上工作良好,但缺乏通用性。 想像一下为不同的绘画任务使用不同的工具 - 大面积的刷子、细节的细尖笔等。
  • 全景架构: 这些架构试图在一个框架内统一语义和实例分割。 虽然方便,但它们通常需要对每个任务进行单
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值