CVPR 2023: Multiscale Tensor Decomposition and Rendering Equation Encoding for View Synthesis

本文介绍了一种基于多尺度张量分解的连续场景表示方法,用于视图合成。通过将渲染方程编码到特征空间中,该方法能更好地处理视点依赖和细节恢复,同时在NeRF的基础上提高了优化速度和图像质量。通过在合成和真实世界数据集上的实验,展示了与传统方法相比的优越性。
摘要由CSDN通过智能技术生成

我们使用以下6个分类标准对本文的研究选题进行分析:

1. 表示类型

  • 连续场景表示(NeRF 类): 将场景隐式定义为一个连续场,允许在任意点查询。
  • 离散场景表示: 使用显式 3D 结构,例如体素或点云。
  • 混合表示: 结合连续和离散表示的优势。

2. 表示编码

  • 单尺度编码: 直接将特征编码到网格或 MLP 上。
  • 多尺度编码: 分层结构允许在不同细节级别进行表示,有助于提高效率和高频细节恢复。
  • 张量分解: 将特征组织成结构化张量,而不是简单的网格。

3. 视点依赖处理

  • 位置编码: 神经网络以 3D 位置和 2D 视点方向作为输入,直接学习视点相关效果。
  • 显式视点依赖表示: 分离出导致场景外观随视点变化的因素。
  • 特征空间渲染方程编码: 将光传输原理直接嵌入到模型的学习特征中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值