我们使用以下6个分类标准对本文的研究选题进行分析:
1. 表示类型
- 连续场景表示(NeRF 类): 将场景隐式定义为一个连续场,允许在任意点查询。
- 离散场景表示: 使用显式 3D 结构,例如体素或点云。
- 混合表示: 结合连续和离散表示的优势。
2. 表示编码
- 单尺度编码: 直接将特征编码到网格或 MLP 上。
- 多尺度编码: 分层结构允许在不同细节级别进行表示,有助于提高效率和高频细节恢复。
- 张量分解: 将特征组织成结构化张量,而不是简单的网格。
3. 视点依赖处理
- 位置编码: 神经网络以 3D 位置和 2D 视点方向作为输入,直接学习视点相关效果。
- 显式视点依赖表示: 分离出导致场景外观随视点变化的因素。
- 特征空间渲染方程编码: 将光传输原理直接嵌入到模型的学习特征中。