统计--Bhattacharyya distance(巴氏距离)

巴塔查里亚距离是一种用于度量两个概率分布相似性的统计方法,与巴塔查里亚系数密切相关,该系数衡量两个统计样本的重叠量。此距离广泛应用于特征提取、图像处理、说话人识别等领域,被认为是评估样本间相似性的有效指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自维基:https://en.wikipedia.org/wiki/Bhattacharyya_distance

统计中Bhattacharyya距离用于 度量两个概率分布的相似性。它与Bhattacharyya系数密切相关,后者是两个统计样本或总体之间重叠量的度量。两项措施均以1930年代在印度统计研究所工作的统计学家Anil Kumar Bhattacharya的名字命名。[1]

该系数可用于确定所考虑的两个样本的相对接近度。它用于度量分类的类的可分离性,并且被认为比马哈拉诺比斯距离更可靠,因为当两个类的标准偏差相同时,马哈拉诺比斯距离是Bhattacharyya距离的特例。因此,当两个类别具有相似的均值但标准差不同时,马氏距离将趋于零,而巴氏距离则根据标准差之间的差异而增长。

 

因此,这个公式对于每个具有来自两个样本的成员的分区更大,对于其中两个样本的成员有较大重叠的每个分区更大。分区数目的选择取决于每个样本中的成员数目;过少的分区会因为高估重叠区域而失去准确性,过多的分区会因为在人口稠密的样本空间中创建没有成员的单独分区而失去准确性。

如果由于每个分区的乘法为零而没有重叠,那么Bhattacharyya系数将为0。这意味着完全分离的样本之间的距离不会仅由该系数暴露。

Bhattacharyya系数用于极性码的构造[5]。

 

Bhattacharyya距离广泛应用于特征提取和选择研究,[6]图像处理,[7]说话人识别,[8]电话聚类[9]

Bhattacharyya空间是一种可用于纹理分割的特征选择技术

External links[edit]

https://www.encyclopediaofmath.org/index.php/Bhattacharyya_distance

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值