【深度学习】目标检测中 IOU 的概念及计算

本文深入探讨了目标检测中的一个重要概念——IOU(交并比),介绍了其计算公式和实际意义。IOU衡量预测bbox与Ground Truth的重叠程度,范围在0到1之间,值越大表示重叠度越高。当IOU为0时,两个框无交集;为1时,完全重叠。文章还提供了简单的Python代码示例,帮助理解IOU的计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在目标检测当中,有一个重要的概念就是 IOU。一般指代模型预测的 bbox 和 Groud Truth 之间的交并比。

何为交并比呢?

I O U = A ∩ B A ∪ B IOU = \frac{A\cap B}{A\cup B} IOU=ABAB

在这里插入图片描述

集合 A 和集合 B 的并集包括了上面 3 种颜色区域。

集合 C 是集合 A 与集合 B 的交集。

在目标检测当中,IOU 就是上面两种集合的比值。

A ∪ B A \cup B AB 其实就是 A + B − C A + B - C A+BC

那么公式可以转变为:
I O U = A ∩ B A + B

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

frank909

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值