记录在ubuntu RTX2080Ti下配置torch

本文介绍了在Ubuntu16.4环境下使用RTX2080Ti显卡配置CUDA10.0及CUDNN7.5的过程,并分享了解决nvcc错误、cmake安装等问题的经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

配置成功时的环境:

ubuntu 16.4 + RTX 2080Ti + nvidia driver 410.78 + cuda 10.0 + cudnn 7.5 + cmake 3.13 + gcc 5.4

 

./install.sh 中遇到的问题:

1. nvcc fatal   : Unsupported gpu architecture 'compute_75'

是nvidia driver的版本和cuda的版本不匹配造成的。之前用cuda 9.0版本太低,后换成cuda 10.0解决。nvidia driver 和cuda版本的对应参考官方doc:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-libraries-knonwn-issues

 

2. error: cannot overload functions distinguished by return type alone

在cuda 10.1是碰到,可以参考https://github.com/torch/cutorch/issues/834,按照nagadomi的方法解决了这个问题,但是又报其他错误。改成cuda 10.0后没有报这个错误,可能还是cuda和nvidia driver版本不匹配的锅??

 

3. cmake安装

官网:https://cmake.org/download/

解压文件并进入文件目录,然后执行

./bootstrap
make -j4
sudo make install

 

### 关于在 Ubuntu 22.04 上为 RTX 1050 Ti 安装 CUDA 的教程 为了成功配置 NVIDIA 显卡并安装 CUDA 工具包,在 Ubuntu 22.04 系统上需要完成以下几个主要部分的操作: #### 配置显卡驱动程序 对于 RTX 1050 Ti 这类较新的 GPU 型号,建议先通过 `ubuntu-drivers` 自动检测适合的显卡驱动版本,并执行自动安装操作。这一步可以通过以下命令实现[^2]: ```bash sudo ubuntu-drivers autoinstall ``` 此过程会扫描硬件环境并选择兼容性最佳的 NVIDIA 驱动版本进行部署。 #### 下载与安装 CUDA 软件包 CUDA 是由 NVIDIA 提供的一套用于加速计算任务的开发工具集。按照官方文档指导,可以采用 `.deb` 文件的方式手动安装特定版本的 CUDA 工具链。以下是具体步骤说明: 1. **下载对应版本的 DEB 包** 访问[NVIDIA 官方网站](https://developer.nvidia.com/cuda-downloads),找到适用于目标系统的 CUDA 版本链接,例如针对 Ubuntu 22.04 和指定架构 (AMD64) 的文件路径。 2. **利用 dpkg 执行初步安装** 将已获取到本地存储中的 deb 文件作为参数传递给 `dpkg` 实用程序来启动基础组件加载流程: ```bash sudo dpkg -i cuda-repo-<distro>-<cuda_version>-local_<build_number>_<arch>.deb ``` 3. **更新 APT 缓存索引** 添加公钥至系统信任列表之后刷新可用软件源清单以便后续依赖解析正常运作: ```bash sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub sudo apt-get update ``` 4. **正式触发 CUDA 主体模块装配进程** 使用标准包管理器指令最终落实整个框架结构搭建工作: ```bash sudo apt-get install cuda ``` 以上每步均需依据实际场景调整变量占位符 `<...>` 中的具体数值以匹配当前情境下的精确需求[^1]。 #### 后续验证环节 完成上述全部动作后应当重启计算机使新装载的服务生效;接着可通过运行简单的测试脚本来确认整体设置无误以及设备能够被正确识别访问。 --- ### 示例代码片段展示 下面给出一段 Python 测试样例用来检查是否存在有效的 GPU 设备连接状态及其基本信息读取功能是否健全: ```python import torch if torch.cuda.is_available(): device_count = torch.cuda.device_count() current_device_name = torch.cuda.get_device_name(0) print(f"CUDA-enabled GPUs detected: {device_count}") print(f"Primary Device Name: {current_device_name}") else: print("No CUDA-capable devices found.") ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值