基于采样的运动规划技术解析
1. 基于搜索树数量的算法分类
在运动规划中,基于采样的算法会结合采样和搜索来克服难题。根据搜索树的数量,算法可分为以下几类:
- 单向(单树)方法 :规划过程类似于离散前向搜索。这类算法的主要区别在于顶点选择方法(VSM)和局部路径规划方法(LPM)的实现。例如,在一些复杂的“陷阱”问题中,前向搜索算法可能会陷入困境,像图中类似“火山口”的陷阱,在高维空间中,找到狭窄的出口几乎不可能。而如果规划器采用某种贪心、最佳优先的策略,反向搜索可能更容易解决此类问题。
- 双向(双树)方法 :由于不清楚起始点 (q_I) 或目标点 (q_G) 是否位于陷阱或其他具有挑战性的区域,双向搜索通常是更好的选择。其原理是,以 (q_I) 和 (q_G) 为中心的两个传播波前,相比以 (q_I) 为中心的单个波前到达 (q_G),会覆盖更少的区域。双向搜索通过在选择顶点时交替使用两棵树来实现 VSM,LPM 有时会探索 (C_{free}) 的新部分,有时会尝试连接两棵树。
- 多向(多于两棵树)方法 :当存在双重陷阱等复杂问题时,可以从其他地方生长树,以增加从其他方向进入陷阱的机会。但这会使树的连接问题变得复杂,例如每次迭代应选择哪些树对进行连接、同一对树应多久选择一次、应选择哪些顶点对等,实际中需要许多启发式参数来解决这些问题。
当然,也存在一些极端情况,如图中所示的示例,几乎所有基于采样的规划算法都可能失效,尤其是需要定位和穿越一系列狭窄走廊的问题。除非能利用特定问题的结构,否则有些问题用基于采样的规划方法是无法解决的。
超级会员免费看
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



