26、基于采样的运动规划技术解析

基于采样的运动规划技术解析

1. 基于搜索树数量的算法分类

在运动规划中,基于采样的算法会结合采样和搜索来克服难题。根据搜索树的数量,算法可分为以下几类:
- 单向(单树)方法 :规划过程类似于离散前向搜索。这类算法的主要区别在于顶点选择方法(VSM)和局部路径规划方法(LPM)的实现。例如,在一些复杂的“陷阱”问题中,前向搜索算法可能会陷入困境,像图中类似“火山口”的陷阱,在高维空间中,找到狭窄的出口几乎不可能。而如果规划器采用某种贪心、最佳优先的策略,反向搜索可能更容易解决此类问题。
- 双向(双树)方法 :由于不清楚起始点 (q_I) 或目标点 (q_G) 是否位于陷阱或其他具有挑战性的区域,双向搜索通常是更好的选择。其原理是,以 (q_I) 和 (q_G) 为中心的两个传播波前,相比以 (q_I) 为中心的单个波前到达 (q_G),会覆盖更少的区域。双向搜索通过在选择顶点时交替使用两棵树来实现 VSM,LPM 有时会探索 (C_{free}) 的新部分,有时会尝试连接两棵树。
- 多向(多于两棵树)方法 :当存在双重陷阱等复杂问题时,可以从其他地方生长树,以增加从其他方向进入陷阱的机会。但这会使树的连接问题变得复杂,例如每次迭代应选择哪些树对进行连接、同一对树应多久选择一次、应选择哪些顶点对等,实际中需要许多启发式参数来解决这些问题。

当然,也存在一些极端情况,如图中所示的示例,几乎所有基于采样的规划算法都可能失效,尤其是需要定位和穿越一系列狭窄走廊的问题。除非能利用特定问题的结构,否则有些问题用基于采样的规划方法是无法解决的。

考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值