【图书推荐】《PyTorch深度学习与计算机视觉实践》-CSDN博客
下面将使用一个预训练的模型完成图像分割的示例。Torch的FCN-ResNet101语义分割模型是在COCO 2017训练集的一个子集上训练得到的,相当于PASCAL VOC数据集,支持20个类别。
调用FCN的代码如下:
from torchvision import models
获取模型,如果本地缓存没有,则会自动下载
fcn = models.segmentation.fcn_resnet101(pretrained=True).eval()
下面就是图像的准备,这里准备了一幅来自VOC动物数据集的图像,如图14-5所示。
图14-5 准备的图像
有了图像,自然而然的想法就是使用FCN对这幅图进行图像分割。但是在将它输入模型之前,还需要进行预处理,顺序如下:
(1)将图像大小调整到224×224。
(2)转换成Tensor,归一化到[0,1]。
(3)使用均值、方差标准化。
(4)Torch的输入数据格式是NCHW,所以还需要进行维度扩展。
这部分处理的代码如下:
import torchvision.transforms as T
transform = T.Compose([T.ToTensor(),T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
from_img = cv2.imread("./from_img.jpg");
from_img = cv2.cvtColor(from_img,cv2.COLOR_BGR2RGB)
from_img = cv2.resize(from_img, (224, 224))
from_img = transform(from_img).unsqueeze(0)
Torch模型预测的输出是一个OrderedDict结构。对于FCN-ResNet101,它的输出大小是[1×21×H×W],21代表是20+1(background)个类别。然后使用argmax选出每个类别中概率最大的,并将第0个维度去掉,变成H×W的二维图像,这样每一个像素代表的就是该点的类别。
out = fcn(from_img)['out']
print (out.shape)
import numpy as np
om = torch.argmax(out.squeeze(), dim=0).detach().cpu().numpy()
print (om.shape)
print (np.unique(om))
打印结果如下:
可以看到,通过FCN模型计算后,数据根据类别计算成[1,31,224,224]大小的矩阵向量,之后经过处理生成一个和原图像大小相同的二维矩阵。
out是模型的最终输出,其形状是[1×21×H×W],与前面所讨论的结果一致。因为模型是在21个类(包括背景类)上训练的,输出有21个通道,其中该图像的每个像素对应于一个类,所以二维图像(形状[H×W])的每个像素将与相应的类标签对应。对于该二维图像中的每个(x,y)像素,将对应于表示类的0~20的数字。
Unique函数的作用就是将矩阵的数值按“类”提取出来,从打印的结果来看,处理后的图像只包含两种元素,即0和17。现在有了一个二维图像,其中每个像素属于一个类。
下面一步就是将预测的图像解码输出,可以使用如下代码将二维图像转换为RGB图像,其中每个(元素)标签映射到相应的颜色。
def decode_segmap(image, nc=21):
label_colors = np.array([(0, 0, 0), #0=background
#1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle
(128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128),
#6=bus, 7=car, 8=cat, 9=chair, 10=cow
(0, 128, 128), (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0),
#11=dining table, 12=dog, 13=horse, 14=motorbike, 15=person
(192, 128, 0), (64, 0, 128), (192, 0, 128), (64, 128, 128), (192, 128, 128),
#16=potted plant, 17=sheep, 18=sofa, 19=train, 20=tv/monitor
(0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128)])
r = np.zeros_like(image).astype(np.uint8)
g = np.zeros_like(image).astype(np.uint8)
b = np.zeros_like(image).astype(np.uint8)
for l in range(0, nc):
idx = image == l
r[idx] = label_colors[l, 0]
g[idx] = label_colors[l, 1]
b[idx] = label_colors[l, 2]
rgb = np.stack([r, g, b], axis=2)
return rgb
最后将图像用openCV进行展示,代码如下:
rgb = decode_segmap(om)
cv2.imshow("seg_img",rgb)
cv2.waitKey(0)
最终结果如图14-6所示。
图14-6 输出结果
这是经过模型预测后的模型输出,可以看到,对于原始图像,已经可以较为明显地分辨出图像中存在的生物,虽然在细节上还是欠佳,但是作为图像分割的基准还是可以使用的。