【MnasNet】《MnasNet:Platform-Aware Neural Architecture Search for Mobile》

在这里插入图片描述
在这里插入图片描述

CVPR-2019



1 Background and Motivation

作者旨在设计一个新的 resource-constrained mobile model 让其在 resource-constrained platforms 跑的更加欢快

2 Related Work

  • 现有网络的基础上压缩:量化,pruning ,NetAdapt 等,do not focus on learning novel compositions of CNN operations

  • hand-crafted 设计,usually take significant human efforts

  • NAS,基于各种 learning algorithms,例如 reinforcement learning / evolutionary search / differentiable search

3 Advantages / Contributions

NAS 出 MnasNet,两个主要创新点

  • incorporate model latency into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency(不单单是 ACC)

  • a novel factorized hierarchical search space that encourages layer diversity throughout the network.(不像 NasNet 那样是 cell 级别的,而是 block 级别的)

achieve new state-of-the-art results on both ImageNet classification and COCO object detection under typical mobile inference latency constraints

4 Method

4.1 Problem Formulation

以前方法的 objective function
在这里插入图片描述
m m m 是 model, A C C ACC ACC 是 accuracy, L A T LAT LAT 是 inference latency, T T T 是 target latency

上面的 objective 仅考虑了精度,没有考虑速度

作者 more interested in finding multiple Pareto-optimal solutions in a single architecture search(速度和精度的 trade-off)

设计了如下的 objective function
在这里插入图片描述
在这里插入图片描述
根据 α \alpha α β \beta β 取值的不同,有如下的 soft 和 hard 版

在这里插入图片描述
横坐标是 latency,纵坐标为 objective

soft 版本 − 0.07 -0.07 0.07 的由来如下:

we empirically observed doubling the latency usually brings about 5% relative accuracy gain

R e w a r d ( M 2 ) = a ⋅ ( 1 + % 5 ) ⋅ ( 2 l / T ) β ≈ R e w a r d ( M 1 ) = a ⋅ ( l / T ) β Reward(M2) = a \cdot (1 + %5 ) \cdot (2l/T )^{\beta}\approx Reward(M1) = a \cdot (l/T )^{\beta} Reward(M2)=a(1+5)(2l/T)βReward(M1)=a(l/T)β

根据上面公式求出来 β ≈ − 0.07 \beta \approx -0.07 β0.07

4.2 Factorized Hierarchical Search Space

在这里插入图片描述
allowing different layer architectures in different blocks

同一个 block 中的 N 个 layer 是一样的,layer 里面的操作如下

在这里插入图片描述
搜索的时候 using MobileNetV2 as a reference

  每个 layers 数量 {0, +1, -1} based on MobileNetV2

  filter size per layer {0.75, 1.0, 1.25} to MobileNetV2

成品结构之一

在这里插入图片描述
在这里插入图片描述

搜索空间的大小如下:

  假设 B B B blocks,and each block has a sub search space of size S S S with average N N N layers per block

  搜索空间大小为 S B S^B SB

   每个 layer 都不同的话,则为 S B ∗ N S^{B*N} SBN

4.3 Search Algorithm

在这里插入图片描述
sample-eval-update loop,maximize the expected reward:
在这里插入图片描述
reward value R(m) 用的是 objective function

5 Experiments

5.1 Datasets

directly perform our architecture search on the ImageNet training set but with fewer training steps (5 epochs)

区别于 NasNet 的 Cifar10

5.2 Results

1)ImageNet Classification Performance
在这里插入图片描述
T = 75 ms,一次搜索,多个 model A1 / A2 / A3

相比 mobileNet v2,引入了 SE 模块,探讨下 SE 模块的影响
在这里插入图片描述

2)Model Scaling Performance

在这里插入图片描述
这里的 depth multiplier 指的是 channels,可以看出全方位领先 mobilenet v2
在这里插入图片描述
作者也可以灵活的通过改变 NAS 时 T 的值来控制模型的大小,上表可以看出,比在大模型上砍通道数效果更猛

3)COCO Object Detection Performance

在这里插入图片描述
没什么好评论的,都是菜鸡互啄,哈哈,开玩笑哒,有一定提升

5.3 Ablation Study and Discussion

1)Soft vs. Hard Latency Constraint
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

hard 版 focus more on faster models to avoid the latency penalty(objective function 也可以看出)

soft 版 tries to search for models across a wider latency range

2)Disentangling Search Space and Reward

在这里插入图片描述
解耦探讨下两个创新点的作用

3)Layer Diversity

在这里插入图片描述

6 Conclusion(own)

  • 在 mobilenet v2 基础上搜

  • Pareto-optimal,帕累托最优(来自百度百科)

    帕累托最优(Pareto Optimality),也称为帕累托效率(Pareto efficiency),是指资源分配的一种理想状态,假定固有的一群人和可分配的资源,从一种分配状态到另一种状态的变化中,在没有使任何人境况变坏的前提下,使得至少一个人变得更好,这就是帕累托改进或帕累托最优化。
    帕累托最优状态就是不可能再有更多的帕累托改进的余地;换句话说,帕累托改进是达到帕累托最优的路径和方法。 帕累托最优是公平与效率的“理想王国”。是由帕累托提出的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值