如何自学人工智能?——知乎回答,持续更新ing

版权声明:转载请通过公众号《湾区人工智能》联系我授权,谢谢 https://blog.csdn.net/BTUJACK/article/details/78832998

 

 

********************************2018.12.1 更新********************************

转行学AI,如何选择适合的方向

https://blog.csdn.net/BTUJACK/article/details/84675008

 

********************************2018.11.20 更新********************************

 

骚年:

 

 

网上勾搭一个大佬,学习一下转行经验。

 

 

转行靠得是实力,各种数据比赛,拿到大奖,容易转行

 

 

 

对推荐系统认知为零,个人能力强也可以转推荐系统工程师。

 

 

 

********************************2018.11.15 更新********************************

快速入门人工智能的方法,持续更新ing

https://blog.csdn.net/BTUJACK/article/details/84109941

 

********************************2018.10.21 更新********************************

其实,我是按照网络各种培训班的路径来学习的,现在更新下我用的路径

课程安排

  • 第一阶段:零基础快速上手编程

    • 在线直播:1-基本python类型、判断与循环流程等
    • 在线实训:2-python基本练习题
    • 在线直播:3-文件/数据读写、面向对象、第三方库等
    • 在线实训:4-多种数据读写与面向对象练习
    • 线下实战:5-python基本练习题 与 google python实战题
  • 第二阶段:数据分析全攻略

    • 在线直播:1-pandas花式数据统计与分析技能
    • 在线实训:2-pandas综合练习
    • 在线直播:3-用pandas完成机器学习数据预处理与特征工程
    • 在线实训:4-pandas完成Kaggle机器学习预处理
    • 线下实战:5-美国大选、共享单车数据分析
  • 第三阶段:可视化提升数据逼格技能get

    • 在线直播:1-好用的python可视化利器matplotlib
    • 在线实训:2-matplotlib完成Titanic和自行车租赁数据可视化
    • 在线直播:3-自带各种数据拟合分析的可视化利器seaborn
    • 在线实训:4-seaborn完成Titanic和自行车租赁数据可视化
    • 线下实战:5-美国大选、共享单车可视化技能巩固与实战
  • 第四阶段:玩转大数据

    • 在线直播:1-hadoop与map-reduce
    • 在线实训:2-手写map-reduce完成词频统计,制作词云
    • 在线直播:3-Spark与大数据处理
    • 在线实训:4-Spark大数据日志分析
    • 线下实战:5-大数据分析处理案例
  • 第五阶段:机器学习原理

    • 在线视频:1-线性回归、logistic回归、梯度下降
    • 在线视频:2-决策树、随机森林、GBDT
    • 在线视频:3-SVM与数据分类
    • 在线视频:4-特征工程:数据清洗、异常点处理、特征抽取、选择与组合
    • 在线直播:5-logistic回归 Softmax SVM 与 朴素贝叶斯的精髓速讲
    • 在线实训:6-算法核心要点巩固(上)
    • 在线直播:7-决策树 随机森林 boosting 模型融合的精髓速讲
    • 在线实训:8-算法核心要点巩固(下)
    • 线下实战:9-机器学习算法面试要点大考察
  • 第六阶段:机器学习实战

    在线直播:机器学习流程、基本分类与回归模型

    • 1-ML综述及sklearn库简介 
    • 2-ML算法一览(各类算法及简单应用) 
    • 3-数据预处理及验证
    • 4-回归案例

    在线实训:Kaggle机器学习比赛中的特征工程处理实战

    在线直播:机器学习中的特征工程与模型调优,sklearn用法

    • 1-特征工程(独热向量编码,分段与离散化,多项式特征)
    • 2-特征处理、特征构造、 特征选择
    • 3-模型评估与参数调优
    • 4-流程化处理:PIPELINE 

    在线实训:sklean接口熟悉与机器学习建模指导

    线下实战:sklearn建模与使用

    • 1-手把手带你get scikit-learn机器学习建模重要点
    • 2-get迅速上手建模的技能
    • 3-学习如何进行模型调优,一步步优化自己的模型
    • 4-包括数个Kaggle与天池案例

     

    在线直播:XGBoost与LightGBM精讲

    • 1-建模调参(数据清洗、特征处理、特征选择、模型的调参、评估)
    • 2-模型状态(过/欠拟合、状态验证、过/欠拟合的调整、模型调优)
    • 3-模型融合(集体智慧:投票器/Bagging/随机森林/Boosting)
    • 4-XGBoost简介及三类参数详解,和代码实现

    在线实训:sklearn刷Kaggle比赛题

    在线直播:自然语言处理相关问题与建模

    • 1-Kaggle便利店销售预测案例
    • 2-比赛开发流程:数据准备、数据特征处理、XGBoost设参、训练与分析
    • 3-NLP案例1:分类与打标签的应用:资讯,金融
    • 4-NLP案例2:中文情感分析

    在线实训:XGBoost与LightGBM使用

    在线直播:金融风控比赛实战

    • 1-微额借贷风控案例:数据分析、特征处理、特征选择、模型设计
    • 2-风控算法案例:数据清洗、特征选择、类别不平衡解决、模型设计
    • 3-模型融合及项目代码

    在线实训:数据科学比赛练习赛

    线下实战:集成算法与场景建模

    • 1-集成模型在多个比赛和工业场景的应用
    • 2-熟练XGBoost和LightGBM的使用
    • 3-使用树形Boosting模型达到最佳拟合效果

     

  • 第七阶段:深度学习原理到实战

    • 在线视频:1-神经网络初步:全连接与反向传播
    • 在线视频:2-卷积神经网络与计算机视觉
    • 在线视频:3-循环神经网络与自然语言处理
    • 在线视频:4-深度学习实践:Caffe与Tensorflow项目实战
    • 在线直播:5-深度神经网络、google wide&&deep模型、腾讯通用CTR神经网络框架与实现
    • 在线直播:6-卷积神经网络、caffe实战图像分类、Tensorflow实战图像风格变换实现
    • 在线直播:7-循环神经网络、Tensorflow实战情感分析与文本生成实现
    • 线下实战:8-Caffe&&Tensorflow实战
  • 第八阶段:实际综合项目与就业指导

    • 线下实战:1-自然语言处理项目

      (文本数据抓取+spark/pandas数据分析+可视化+特征抽取+Sklearn/Spark机器学习建模+深度学习建模)

    • 线下实战:2-分类与推荐系统实战

      (音乐数据抓取+spark/pandas分析+可视化+协同过滤+隐语义模型+特征抽取分类建模)

    • 线下实战:3-图像项目

      (图像分类+图像检索)

    • 线下实战:4-机器学习面试辅导

      (面试注意点+常见面试考点精讲+简历指导+项目展示)

实战项目

  • 实战项目1

    python基本练习题 与 google python实战题

    通过完成基本练习题,加深和巩固对python的认识和理解,挑战来自google的python实战题,熟练完成书写python代码解决各种问题。

  • 实战项目2

    pandas综合练习

    通过pandas 100题练习,加深对pandas操作的熟悉度,同时通过对Kaggle案例进行数据处理,掌握实际场景下的数据操作工具。

  • 实战项目3

    大数据分析处理案例

    通过对大文件日志的分析,熟悉hadoop,spark写map-reduce处理海量数据的方法,并对电商数据进行处理,get工业界常用大数据技能。

  • 实战项目4

    sklearn建模与使用

    手把手带你get scikit-learn机器学习建模重要点借助于整理的简单资料,get迅速上手建模的技能,并学习如何进行模型调优,一步步优化自己的模型。期间的案例包括数个Kaggle与天池案例。

  • 实战项目5

    Xgboost与LightGBM使用

    大部分情况下,为了取得好结果,我们会用集成模型,这个部分,我们设计了多个比赛和工业场景,帮助大家熟悉Xgboost和LightGBM的使用,使用树形Boosting模型达到最佳拟合效果,同时又很好地控制过拟合。

  • 实战项目6

    金融风控实战

    通过两个金融风控比赛案例:微额借贷和风控算法,全方位阐述数据清洗、特征处理(排序特征,离散特征,交叉特征,类别特征编码,交叉特征)、特征选择(SelectKBest,SelectFromModel,RFE,以及使用XGBOOST选择特征)、模型设计、模型调优等完整流程。

  • 实战项目7

    Caffe&Tensorflow实战

    这个部分,将获得激动人心的深度学习库Caffe与Tensorflow搭建网络进行训练的全技能。我们将通过一个景点的图像识别transfer learning,到图像检索,到风格转换,一步步带大家学习库的使用,真正做到使用深度学习库解决实际的图像场景。

  • 实战项目8

    自然语言处理

    针对工业界最大的一块应用场景:自然语言处理,设计了一个专题,我们将获取从文本数据抓取,到Spark/Pandas文本数据分析,到可视化,到多种文本特征抽取,到sklearn机器学习建模,到Spark机器学习建模,到利用深度学习建模的全部技能。

  • 实战项目9

    分类与推荐实战

    我们针对电商最常见的推荐系统,设计了这个专题,从音乐数据抓取,到数据分析可视化,到利用协同过滤、隐语义模型、用户序列建模、learning to rank等方式完成一个推荐系统。

  • 实战项目10

    图像分类与检索

    具体的图像分类与检索案例,在电商服装数据集上,进行分类与检索的实验。将获得图像数据预处理,Tensorflow建模与调优,基本图像检索与高级图像检索技能。

AI自学路径.jpg

********************************2018.10.7 更新********************************

2018年的国庆假期我在上算法课程,因为通过前段时间的找工作,发现泥腿子出身的我在数据结构和算法这个科目比较差劲,有些全球100强的公司上来就让我做算法题,一下就懵逼了,导致原本可以拿年薪50万只能拿到30万。

 

面试第一关都是考数据结构和算法分析(计算机专业其他课程一般考得比较少,没时间其他课程可以不做准备)。比如,必考的几个基础算法:二分法,双指针法,快速排序,归并排序,各种算法的时间复杂度。通过花钱报了培训班,节省自己的时间,提高自学效率,努力拿到更高的工资。

 

********************************2018.6.16更新********************************

最近行情急剧变化,以前只有大公司招人,现在几乎所有互联网公司都在招人,招聘岗位井喷式增加,因为人才有限,很多小公司放低要求,本科学历以上就可以~~

 

这样大部分程序员短期内没有必要去拿个硕士学历!!!我总结了一个书单,喜欢看书学习的童鞋可以照着买,不喜欢看书的看各种网课视频~

书单:

《Python 编程从入门到实践》埃里克写得,亚马逊评分非常高~高清版电子书和源码,百度云链接系统禁止放,有需要的联系我公众号:湾区人工智能,回复:《人生苦短,我用Python》

《统计学习方法》李航博士

《机器学习》周志华教授

《机器学习实战》哈林顿

《Tensorflow :实战Google深度学习框架》才云科技

《Python3网络爬虫开发实战》崔庆才,用于获取数据,自然语言处理岗位有些公司会要求此技能~

 

以上书目都是爆款,适合打包带回家~

认真看书,练习,做几个项目,我相信会有机会改行做AI工程师,年薪30万起步

alles gut!

 

谢谢

 

********************************以下编辑于2017年7月********************************



先假设你还比较年轻,尽可能去读个计算机硕士。因为现在招聘网站起步就是硕士学历,要不然很难进入人工智能行业。BAT大厂海归硕士起步,海归博士最好。

 

硕士毕业前搞定下面几个事情:

  • 学好python(python对于AI就像枪于战士)
  • 学好数学(高数,线代,概率论统计)
  • 学好数据结构与算法分析
  • 学习机器学习,
  • 学习深度学习
  • 做几个项目(车牌识别,人脸识别,垃圾邮件过滤等等)

 

只要你认真完成以上几个内容,保证轻松月入30K。

 

最后,人工智能涉及很多学科(数学,计算机科学,物理学,神经学,生物学,控制学,哲学等等),如果不喜欢学习,不喜欢做学术,没有在椅子上纹丝不动坐一天的能力,没有一天不学习就难受,只为了钱去做人工智能还是蛮痛苦的,也是做不出成就的。做人工智能需要终生学习,直到dead(活着就要学习,要不然就被时代抛弃了)。

 

如果你去读个硕士不太可能,还有机会:

在SCIENCE发表震惊世界的论文,高中学历也会收到很多大公司的邀请函。

 

 

 

认识你是我们的缘分,同学,等等,学习人工智能,记得关注我。

微信扫一扫
关注该公众号

《湾区人工智能》

回复《人生苦短,我用Python》便可以获取下面的超高清电子书和代码

 

阅读更多

没有更多推荐了,返回首页