陶哲轩实分析(上)8.2及习题-Analysis I 8.2

这一节的逻辑构成是这样的:先定义了在countable集合上的级数,并且在绝对收敛下有Fubini定理成立,而后在uncountable集合上也可以定义级数,只要满足任何有限集合的sup存在。如果f是一个定义在uncountable集合上的绝对收敛级数,那么f非退化的点是至多可数的(证明需要用选择公理)。绝对收敛级数有很好理解的series laws,条件收敛级数则有Riemann的结论:可以收敛到任何实数L。

这一节的习题主要是完善正文中的定理证明,然而也不易。

Exercise 8.2.1

Exercise 3.6.3 says if there’s a function whose domain is on a finite subset of N \mathbf N N, then the range of this function is also finite. I’ll use this result later.
Since X X X is at most countable, X X X may be finite or countable. If X X X is finite, then the statement is obviously true. Now we consider the case when X X X is countable.
First suppose the series ∑ x ∈ X f ( x ) ∑_{x∈X}f(x) xXf(x) is absolutely convergent, then there’s a bijection g : N → X g:\mathbf N→X g:NX such that ∑ n = 0 ∞ f ( g ( n ) ) ∑_{n=0}^∞f(g(n)) n=0f(g(n)) is absolutely convergent. Given any element E E E in the set
S = { ∑ x ∈ A ∣ f ( x ) ∣ ∶ A ⊆ X , A  finite } S=\left\{∑_{x∈A}|f(x)|∶A⊆X,A\text{ finite}\right\} S={ xAf(x)AX,A finite}
We know there’s a finite set A A A such that E = ∑ x ∈ A ∣ f ( x ) ∣ E=∑_{x∈A}|f(x)| E=xAf(x) . So we can have a finite subset S ′ S' S of N N N such that g ( S ′ ) = A g(S')=A g(S)=A, from Exercise 3.6.3 we can have S ′ S' S is bounded above by some natural number k k k, so
E = ∑ x ∈ A ∣ f ( x ) ∣ = ∑ n ∈ S ′ ∣ f ( g ( n ) ) ∣ ≤ ∑ n = 0 k ∣ f ( g ( n ) ) ∣ ≤ ∑ n = 0 ∞ ∣ f ( g ( n ) ) ∣ E=∑_{x∈A}|f(x)| =∑_{n∈S'}|f(g(n))| ≤∑_{n=0}^k|f(g(n))| ≤∑_{n=0}^∞|f(g(n))| E=xAf(x)=nSf(g(n))n=0kf(g(n))n=0f(g(n))
Since this is true for all E E E, we know that ∑ n = 0 ∞ ∣ f ( g ( n ) ) ∣ ∑_{n=0}^∞|f(g(n))| n=0f(g(n)) is an upper bound of S S S, so
sup ⁡ ⁡ S ≤ ∑ n = 0 ∞ ∣ f ( g ( n ) ) ∣ < + ∞ \sup⁡S≤∑_{n=0}^∞|f(g(n))| <+∞ supSn=0f(g(n))<+
On the contrary, if M = sup ⁡ { ∑ x ∈ A ∣ f ( x ) ∣ ∶ A ⊆ X , A  finite } < + ∞ M=\sup\{∑_{x∈A}|f(x)|∶A⊆X,A\text{ finite}\}<+∞ M=sup{ xAf(x)AX,A finite}<+, we assume the series ∑ x ∈ X f ( x ) ∑_{x∈X}f(x) xXf(x) is not absolutely convergent, then given a bijection g : N → X g:\mathbf N→X g:NX, we have S N = ∑ n = 0 N ∣ f ( g ( n ) ) ∣ S_N=∑_{n=0}^N|f(g(n))| SN=n=0Nf(g(n)) is not bounded above, so there exists a k ∈ N k∈\mathbf N kN such that ∑ n = 0 k ∣ f ( g ( n ) ) ∣ > M ∑_{n=0}^k|f(g(n))| >M n=0kf(g(n))>M, we let A = g ( { n : 0 ≤ n ≤ k } ) A=g(\{n:0≤n≤k\}) A=g({ n:0nk}), then A A A is finite, and
∑ n = 0 k ∣ f ( g ( n ) ) ∣ = ∑ x ∈ A ∣ f ( x ) ∣ > M ∑_{n=0}^k|f(g(n))| =∑_{x∈A}|f(x)| >M n=0kf(g(n))=xAf(x)>M
This leads to a contradiction.

Exercise 8.2.2

Since ∑ x ∈ X f ( x ) ∑_{x∈X}f(x) xXf(x) is absolutely convergent, the quantity M M M is well defined. For ∀ n ∈ N ∀n∈\mathbf N nN, consider the set { x ∈ X : ∣ f ( x ) ∣ > 1 / n } \{x∈X:|f(x)|>1/n\} { xX:f(x)>1/n}, this set is finite with cardinality at most M n Mn Mn, thus use Exercise 8.1.9, we know that
{ x ∈ X : f ( x ) ≠ 0 } = ⋃ n = 1 ∞ { x ∈ X : ∣ f ( x ) ∣ > 1 / n } \{x∈X:f(x)≠0\}=⋃_{n=1}^∞\{x∈X:|f(x)|>1/n\} { xX:f(x)=0}=n=1{ xX:f(x)>1/n}
is at most countable.

Exercise 8.2.3

Since both ∑ x ∈ X f ( x ) ∑_{x∈X}f(x) xXf(x) and ∑ x ∈ X g ( x ) ∑_{x∈X}g(x) xXg(x) are absolutely convergent, the sets S = { x ∈ X : f ( x ) ≠ 0 } S=\{x∈X:f(x)≠0\} S={ xX:f(x)=0} and B = { x ∈ X : g ( x ) ≠ 0 } B=\{x∈X:g(x)≠0\} B={ xX:g(x)=0} are at most countable. We denote ∑ x ∈ X f ( x ) = L ∑_{x∈X}f(x)=L xXf(x)=L and ∑ x ∈ X g ( x ) = M ∑_{x∈X}g(x)=M xXg(x)=M.
( a ) Let A ⊆ X A⊆X AX be a finite set, then by proposition 7.1.11 we have
∑ x ∈ A ∣ f ( x ) + g ( x ) ∣ ≤ ∑ x ∈ A ∣ f ( x ) ∣ + ∑ x ∈ A ∣ g ( x ) ∣ ≤ sup ⁡ ⁡ { ∑ x ∈ A ∣ f ( x ) ∣ ∶ A ⊆ X , A  finite } + sup ⁡ { ∑ x ∈ A ∣ g ( x ) ∣ ∶ A ⊆ X , A  finite } < ∞ \begin{aligned}∑_{x∈A} |f(x)+g(x)| &≤∑_{x∈A}|f(x)| +∑_{x∈A}|g(x)| \\&≤\sup⁡\left\{∑_{x∈A}|f(x)|∶A⊆X,A\text{ finite}\right\}+\sup \left\{∑_{x∈A}|g(x)|∶A⊆X,A\text{ finite}\right\}\\&<∞\end{aligned} xAf(x)+g(x)xAf(x)+xAg(x)sup{ xAf(x)AX,A finite}+sup{ xAg(x)AX,A finite}<
which means
sup ⁡ ⁡ { ∑ x ∈ A ∣ f ( x ) + g ( x ) ∣ ∶ A ⊆ X , A  finite } ≤ sup ⁡ ⁡ { ∑ x ∈ A ∣ f ( x ) ∣ ∶ A ⊆ X , A  finite } + sup ⁡ { ∑ x ∈ A ∣ g ( x ) ∣ ∶ A ⊆ X , A  finite } \sup⁡\left\{∑_{x∈A}|f(x)+g(x)|∶A⊆X,A\text{ finite}\right\}\\\leq\sup⁡\left\{∑_{x∈A}|f(x)|∶A⊆X,A\text{ finite}\right\}+\sup \left\{∑_{x∈A}|g(x)|∶A⊆X,A\text{ finite}\right\} sup{ xAf(x)+g(x)AX,A finite}sup{ xAf(x)AX,A finite}+sup{ xAg(x)AX,A finite}
Use Definition 8.2.4 we know that ∑ x ∈ X ∣ f ( x ) + g ( x ) ∣ ∑_{x∈X}|f(x)+g(x)| xXf(x)+g(x) is absolutely convergent. Thus
∑ x ∈ X ∣ f ( x ) + g ( x ) ∣ = ∑ x ∈ X , f ( x ) + g ( x ) ≠ 0 ( f ( x ) + g ( x ) ) = ∑ x ∈ S ∪ B ( f ( x ) + g ( x ) ) ∑_{x∈X}|f(x)+g(x)| =∑_{x∈X,f(x)+g(x)≠0} (f(x)+g(x)) =∑_{x∈S∪B} (f(x)+g(x)) xXf(x)+g(x)=xX,f(x)+g(x)=0(f(x)+g(x))=xSB(f(x)+g(x))
S ∪ B S∪B SB is at most countable, if S ∪ B S∪B SB is finite we can use Proposition 7.1.11(f) to get
∑ x ∈ S ∪ B ( f ( x ) + g ( x ) ) = ∑ x ∈ S ∪ B f ( x ) + ∑ x ∈ S ∪ B g ( x ) = ∑ x ∈ S f ( x ) + ∑ x ∈ B g ( x ) ∑_{x∈S∪B} (f(x)+g(x)) =∑_{x∈S∪B} f(x)+∑_{x∈S∪B} g(x) =∑_{x∈S} f(x) +∑_{x∈B} g(x) xSB(f(x)+g(x))=xSBf(x)+xSBg(x)=xSf(x)+xBg(x)
If S ∪ B S∪B SB is countable, we can have a bijection h : N → S ∪ B h:\mathbf N→S∪B h:NSB, s.t.
∑ x ∈ S ∪ B ( f ( x ) + g ( x ) ) = ∑ n = 0 + ∞ ( f ( h ( n ) ) + g ( h ( n ) ) ) ∑_{x∈S∪B} (f(x)+g(x)) =∑_{n=0}^{+∞}\bigg(f\Big(h(n)\Big)+g\Big(h(n)\Big)\bigg) xSB(f(x)+g(x))=n=0+(f(h(n))+g(h(n)))
Let S N = ∑ n = 0 N ( f ( h ( n ) ) + g ( h ( n ) ) ) = ∑ n = 0 N f ( h ( n ) ) + ∑ n = 0 N g ( h ( n ) ) S_N=∑_{n=0}^N\bigg(f\Big(h(n)\Big)+g\Big(h(n)\Big)\bigg) =∑_{n=0}^Nf(h(n)) +∑_{n=0}^Ng(h(n)) SN=n=0N(f(h(n))+g(h(n)))=n=0Nf(h(n))+n=0Ng(h(n)) , we know that when N → ∞ N→∞ N, ∑ n = 0 N f ( h ( n ) ) → L ∑_{n=0}^Nf(h(n)) →L n=0Nf(h(n))L since A ⊆ A ∪ B A⊆A∪B AAB, by the same logic,

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值