陶哲轩实分析(上)8.1及习题-Analysis I 8.1

以我相对平庸的智商来说,Analysis I 的第8章是整本书中相对比较难的章节之一,由于(以个人的理解)这章实际是将集合论和实分析的起步阶段内容都介绍了,但是篇幅又不会展开到实分析教科书的程度,对于第一次接触的人毫无疑问是比较棘手的,我虽然之前接触过实分析,大致能理解countable和uncountable的区别,但是从没有非常仔细的思考过著名的选择公理Axiom of Choice,以及其各种等价结论,还有其应用。这一章提供了一个机会。

本章的习题也是 Analysis I 中数量比较大,难度也挺高的一部分,基本上如果没有hint,都很难做出来。这种熬脑的感觉在第1节还好,在第5节达到了顶峰。

Exercise 8.1.1

First, if there exists a proper subset Y ⊊ X Y⊊X YX which has the same cardinality as X X X, then assume X X X is finite, then Y Y Y must be finite. Since X = Y ∩ ( X \ Y ) X=Y∩(X\backslash Y) X=Y(X\Y), we know that Y Y Y and X \ Y X\backslash Y X\Y are disjoint, further X \ Y X\backslash Y X\Y is not empty, so # ( X \ Y ) ≥ 1 \#(X\backslash Y)≥1 #(X\Y)1, and
# ( X ) = # ( Y ) + # ( X \ Y ) = # ( X ) + # ( X \ Y ) ≥ # ( X ) + 1 > # ( X ) \#(X)=\#(Y)+\#(X\backslash Y)=\#(X)+\#(X\backslash Y)≥\#(X)+1>\#(X) #(X)=#(Y)+#(X\Y)=#(X)+#(X\Y)#(X)+1>#(X)
which is a contradiction.
On the contrary, if X X X is infinite, then we can form a set S S S like this:
Choose ∀ x ∈ X ∀x∈X xX, rename it x 0 x_0 x0 and let S 0 = { x 0 } S_0=\{x_0 \} S0={ x0}, then choose any element belongs to X \ S 0 X\backslash S_0 X\S0, and rename it x 1 x_1 x1, then let S 1 = S 0 ∪ { x 1 } S_1=S_0∪\{x_1 \} S1=S0{ x1}. This process shall never stop, since X X X is infinite and we have the Axiom of Choice. Doing this recursively, we can eventually get a set S S S (by letting n → ∞ n→∞ n), obviously S ⊆ X S⊆X SX.
We let Y = X \ { x 0 } Y=X\backslash \{x_0\} Y=X\{ x0}, then Y Y Y is a proper subset of X X X. For any x ∈ X x∈X xX, either x ∈ S x∈S xS or x ∈ X \ S x∈X\backslash S xX\S, thus we define a function f f f from X X X to Y Y Y as follows:
f ( x ) = { x n + 1 , x = x n ∈ S x , x ∈ X \ S f(x)=\begin{cases}x_{n+1},&x=x_n∈S\\x,&x∈X\backslash S \end{cases} f(x)={ xn+1,x,x=xnSxX\S
It’s easy to show that f f f is a bijection.

Exercise 8.1.2

For the sake of contradiction we assume Proposition 8.1.4 is false, then there’s a nonempty set X ⊆ N X⊆\mathbf N XN, such that for any n ∈ X n∈X nX, there exists one m ∈ X m∈X mX s.t. m < n m<n m<n.
Since X ≠ ∅ X≠∅ X=, we choose x ∈ X x∈X xX, and let x = a 0 x=a_0 x=a0, by our assumption, we can find an element a 1 ∈ X , a 1 < x = a 0 a_1∈X,a_1<x=a_0 a1X,a1<x=a0, once we find a n a_n an, we can by assumption find an element a n + 1 ∈ X a_{n+1}∈X an+1X such that a n + 1 < a n a_{n+1}<a_n an+1<an, thus we build a infinite descent sequence ( a n ) n = 0 ∞ (a_n )_{n=0}^∞ (an)n=0 of natural numbers, this contradicts the principle of infinite descent.
If we replace the natural numbers by the integers, then the well-ordering principle doesn’t work. For example the set X = { − 1 , − 2 , − 3 , … } X=\{-1,-2,-3,…\} X={ 1,2,3,} doesn’t have a minimum element.
If we replace the natural numbers by the positive rationals, then the well-ordering principle doesn’t work. For example the set X = { q ∈ Q : q > 0 } X=\{q∈\mathbf Q:q>0\} X={ qQ:q>0} doesn’t have a minimum element.

Exercise 8.1.3

I will prove this Proposition in a complete manner.
Recursively define a sequence of natural numbers a 0 , a 1 , a 2 , … a_0,a_1,a_2,… a0,a1,a2, using the formula below:
a n ≔ min ⁡ { x ∈ X : ∀ m < n , x ≠ a m } a_n≔\min \{x∈X:∀m<n,x≠a_m \} an:=min{ xX:m<n,x=am}
Since X X X is infinite, the set { x ∈ X : ∀ m < n , x ≠ a m } \{x∈X:∀m<n,x≠a_m \} { xX:m<n,x=am} should also be infinite, assume not, then for some n this set is finite, and { a 0 , a 1 , … , a n − 1 } \{a_0,a_1,…,a_{n-1} \} { a0,a1,,an1} is finite, by
X = { x ∈ X : ∀ m < n , x ≠ a m } ∪ { a 0 , a 1 , … , a n − 1 } X=\{x∈X:∀m<n,x≠a_m \}∪\{a_0,a_1,…,a_{n-1} \} X={ xX:m<n,x=am}{ a0,a1,,an1}
We deduce X X X is finite, which is a contradiction.
Since { x ∈ X : ∀ m < n , x ≠ a m } \{x∈X:∀m<n,x≠a_m \} { xX:m<n,x=am} is infinite, it’s not empty for every n n n, so we can successfully define min ⁡ ⁡ { x ∈ X : ∀ m < n , x ≠ a m } \min⁡\{x∈X:∀m<n,x≠a_m \} min{ xX:m<n,x=am

  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值