陶哲轩实分析(上)11.8及习题-Analysis I 11.8

Exercise 11.8.1

We prove this by induction on n n n. More precisely, we let P ( n ) P(n) P(n) be the property that whenever I I I is a bounded interval, and whenever P \mathbf P P is a partition of I I I with cardinality n n n, that α [ I ] = ∑ J ∈ P α [ J ] α[I]=\sum_{J\in \mathbf P}α[J] α[I]=JPα[J] .
The case P ( 0 ) P(0) P(0) and P ( 1 ) P(1) P(1) are all easy to prove. Now suppose inductively that P ( n ) P(n) P(n) is true for n ≥ 1 n\geq 1 n1, let I I I be a bounded interval, and P \mathbf P P be a partition of I I I with cardinality n + 1 n+1 n+1.
If I I I is the empty set or a point, then all the intervals in P \mathbf P P must also be either the empty set or a point and so every interval has length zero and the claim is trivial. Thus we will assume that I I I is an interval of the form ( a , b ] , [ a , b ) , ( a , b ) (a,b],[a,b),(a,b) (a,b],[a,b),(a,b) or [ a , b ] [a,b] [a,b].
Let us first suppose that b ∈ I b\in I bI, i.e., I I I is either ( a , b ] (a,b] (a,b] or [ a , b ] [a,b] [a,b]. Since b ∈ I b\in I bI, we know that one of the intervals K K K in P \mathbf P P contains b b b. Since K K K is contained in I I I, it must therefore be of the form ( c , b ] , [ c , b ] (c,b],[c,b] (c,b],[c,b], or { b } \{b\} { b} for some real number c c c, with a ≤ c ≤ b a\leq c\leq b acb (in the latter case of K = { b } K=\{b\} K={ b}, we set c : = b c:=b c:=b). In particular, this means that the set I − K I-K IK is also an interval of the form [ a , c ] , ( a , c ) , ( a , c ] , [ a , c ) [a,c],(a,c),(a,c],[a,c) [a,c],(a,c),(a,c],[a,c) when c > a c>a c>a, or a point or empty set when a = c a=c a=c. Either way, we easily see that
α [ I ] = α ( b ) − α ( a ) = α ( b ) − α ( c ) + α ( c ) − α ( a ) = α [ K ] + α [ I − K ] α[I]=α(b)-α(a)=α(b)-α(c)+α(c)-α(a)=α[K]+α[I-K] α[I]=α(b)α(a)=α(b)α(c)+α(c)α(a)=α[K]+α[IK]
On the other hand, since P \mathbf P P forms a partition of I I I, we see that P − { K } \mathbf P-\{K\} P{ K} forms a partition of I − K I-K IK, By the induction hypothesis, we thus have
α [ I − K ] = ∑ J ∈ P − { K } α [ J ] α[I-K]=\sum_{J\in \mathbf P-\{K\}}α[J] α[IK]=JP{ K}α[J]
Combining these two identities, we obtain
α [ I ] = ∑ J ∈ P α [ J ] α[I]=\sum_{J\in \mathbf P}α[J] α[I]=JPα[J]
Now suppose that b ∉ I b\notin I b/I, i.e., I is either ( a , b ) (a,b) (a,b) or [ a , b ) [a,b) [a,b), Then one of the intervals K K K also is of the form ( c , b ) (c,b) (c,b) or [ c , b ) [c,b) [c,b). In particular, this means that the set I − K I-K IK is also an interval of the form [ a , c ] , ( a , c ) , ( a , c ] , [ a , c ) [a,c],(a,c),(a,c],[a,c) [a,c],(a,c),(a,c],[a,c) when c > a c>a c>a, or a point or empty set when a = c a=c a=c. The rest of the argument then proceeds as above.

Exercise 11.8.2

Proposition: Let I I I be a bounded interval, and let f : I → R f:I\to\mathbf R f:IR be a function. Suppose that P \mathbf P P and P ′ \mathbf P' P are partitions of I I I such that f f f is piecewise constant both with respect to P \mathbf P P and with respect to P ′ \mathbf P' P. Then p . c . ∫ [ P ] f d α = p . c . ∫ [ P ′ ] f d α p.c.\int_{[\mathbf P]} fdα=p.c.\int_{[\mathbf P']}fdα p.c.[P]fdα=p.c.[P]fdα.
Proof: By Lemma 11.2.7, we know f f f is piecewise constant with respect to P # P ′ \mathbf P\#\mathbf P' P#P, thus the value
p . c . ∫ [ P # P ′ ] f d α = ∑ J ∈ P # P ′ c J α [ J ] p.c.\int_{[\mathbf P\#\mathbf P']}fdα=\sum_{J\in \mathbf P\# \mathbf P'}c_J α[J] p.c.[P#P]fdα=JP#PcJα[J]
is well defined. Now choose any K ∈ P K\in \mathbf P KP, then P K = { J ∈ P # P ′ : J ⊆ K } \mathbf P_K=\{J\in \mathbf P\# \mathbf P':J\subseteq K\} PK={ JP#P:JK} is a partition of K K K, and f f f is constant with constant value c K c_K cK on both K K K and all elements of P K \mathbf P_K PK, thus by Theorem 11.1.13 we have c J = c K , ∀ J ∈ P K c_J=c_K,\forall J\in \mathbf P_K cJ=cK,JPK, and
α [ K ] = ∑ J ∈ P K α [ J ]    ⟹    c K α [ K ] = ∑ J ∈ P K c K α [ J ] = ∑ J ∈ P K c J α [ J ] α[K]=\sum_{J\in \mathbf P_K}α[J] \implies c_K α[K]=\sum_{J\in \mathbf P_K}c_K α[J]=\sum_{J\in \mathbf P_K}c_J α[J] α[K]=JPKα[J]cKα[K]=JPKcKα[J]=JPKcJα[J]
Also, consider the set { J ∈ P # P ′ : J ⊆ K  for some  K ∈ P } ⊆ P # P ′ \{J\in \mathbf P\# \mathbf P':J\subseteq K \text{ for some }K\in \mathbf P\}\subseteq \mathbf P\# \mathbf P' { JP#P:JK for some KP}P#P, for any J ∈ P # P ′ J\in \mathbf P\# \mathbf P' J

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值