多模态大模型(2)--BLIP

大模型如火如荼,研究者们已经不再满足于基本文本的大语言模型(LLM, Large Language Model),AI领域的热点正逐步向多模态转移,具备多模态能力的多模态大型语言模型(MM(Multi-Modal)-LLM)就成了一个备受关注的研究主题。BLIP(Bootstrapping Language-Image Pretraining)是由Salesforce在2022年提出的多模态预训练模型,它旨在统一视觉语言任务的理解与生成能力,并通过对噪声数据的处理来提高模型性能。本文进行简要的介绍:

模型结构

BLIP模型采用了一种编码器-解码器混合架构(Multimodal mixture of Encoder-Decoder, MED),这种架构非常灵活,可以作为单模态编码器、图像引导文本编码器或图像引导文本解码器来使用。MED包括两个单模态编码器(图像编码器和文本编码器),一个以图像为基础的编码器和一个以图像为基础的解码器。
在这里插入图片描述

预训练方法

BLIP通过三种视觉语言目标进行联合训练:

  1. 图像文本的对比学习:通过对比学习,BLIP学习图像和文本之间的相似度。
  2. 图像文本匹配:BLIP学习匹配图像和相关文本。
  3. 图像条件语言建模:BLIP学习基于图像内容生成文本描述。

CapFilt 机制

BLIP引入了一种高效率利用噪声网络数据的方法,称为CapFilt。这个方法包括两个模块:Captioner和Filter。Captioner用于生成文本标注,而Filter用于去除文本噪声。通过这种方式,BLIP提高了数据的质量和数量,从而提高了模型在视觉语言任务上的性能。
在这里插入图片描述

特点

BLIP的创新主要有两个方面:

  1. 任务多样性:与CLIP相比,BLIP不仅处理图像和文本的对齐问题,还旨在解决包括图像生成、视觉问答和图像描述等更复杂的任务。
  2. 训练方式:BLIP采用了“引导学习”的方式,通过自监督的方式来增强模型对语言和视觉信息的理解。
    这些特点使其在处理图像和文本数据方面展现了卓越的性能,成为众多领域解决复杂问题的强大工具。

应用

利益于BLIP和BLIP-2模型在多模态对齐机制的能力,它在多个实际场景有所应用:
● 图像-文本检索:实现图像检索文本或文本检索图像的双向检索功能。
● 视觉问答(VQA):理解视觉问题(图像语义)并生成回答。
● 图像描述生成:生成对图像的自然语言描述,适用于自动化图片标注、社交媒体内容生成等。
● 多模态生成与交互:BLIP-2通过优化跨模态生成机制,在图像-文本交互中实现了更强的生成效果。

### 关于多模态模型 CLIP、BLIPBLIP-2 的介绍与比较 #### CLIP 模型概述 CLIP(Contrastive Language–Image Pre-training)是一种开创性的多模态模型,能够将图像和文本映射到同一嵌入空间中。该模型通过大规模无监督的方式训练,在大量互联网图片及其对应的标题上进行对比学习。这种设计使得CLIP能够在多种下游任务中表现出色,而无需针对特定任务重新训练。 #### BLIP 模型特点 BLIP(Bootstraping Language-Image Pretraining with Frozen Image Encoders and Large-Scale Web Data)进一步推进了这一领域的发展。它引入了一个冻结的视觉编码器以及一个强大的解码器结构用于处理语言部分。具体来说: - **CapFilt机制**:利用两种不同的方式——基于检索的任务和生成式的描述任务来增强模型的能力[^3]。 - **联合训练目标**:包括但不限于图像文本的对比学习、图像文本匹配以及图像条件下的语言建模等三个方面[^4]。 这些特性使BLIP不仅能在零样本设置下完成复杂的跨模态推理工作,而且还能有效地适应各种实际应用场景中的需求变化。 #### BLIP-2 架构改进 作为BLIP系列的新成员,BLIP-2继承并优化了许多前代版本的优点。其主要贡献在于提出了InstructBLIP框架,这是一个专门为指令跟随场景定制化的解决方案。相比于原始版,BLIP-2做了如下调整: - 更加注重交互性和可控性; - 提升了对于复杂命令的理解能力; - 改进了生成质量,特别是在遵循指示方面表现尤为突出[^1]。 此外,BLIP-2还特别强调了如何更好地支持开放域问答、对话系统以及其他涉及自然语言理解和生成的应用程序开发。 综上所述,虽然这三个模型都属于多模态研究范畴内的成果,但是各自侧重点有所不同。CLIP侧重于构建通用表征;BLIP则致力于提高泛化能力和应用灵活性;至于最新的BLIP-2,则是在此基础上增加了更多面向用户的特性和功能。 ```python # 示例代码展示不同模型加载方法 import clip from blip import BlipModel from blip2 import Blip2Model model_clip, preprocess = clip.load("ViT-B/32") # 加载CLIP模型 blip_model = BlipModel(pretrained=True) # 初始化BLIP实例 blip2_model = Blip2Model(pretrained="instruct") # 使用预定义配置创建BLIP-2对象 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值