这篇论文的标题是《Large Language Models for Networking: Applications, Enabling Techniques, and Challenges》,作者们探讨了大型语言模型(LLMs)在网络领域的应用,并提出了一些使能技术和面临的挑战。
摘要
网络技术的快速发展和网络任务日益增长的复杂性,需要在网络设计、配置和管理方式上实现范式转变。拥有丰富知识和专业技能的大型语言模型(LLMs)是最有前景的候选者之一。本文旨在为构建领域适应的LLMs以用于网络领域铺平道路。首先,我们提出了LLM在垂直网络领域的潜在应用,并展示了从自然语言到网络语言的映射。接着,我们研究了几种使能技术,包括参数高效的微调和提示工程。我们的观点是,网络LLMs需要理解和使用工具。在体现智能的理念驱动下,我们提出了ChatNet,这是一个具有访问各种外部网络工具能力的领域适应型网络LLM框架。ChatNet可以显著减少繁琐网络规划任务所需的时间,从而大幅提升效率。最后,我们强调了关键挑战和未来的研究方向。索引术语 —— 大型语言模型,生成性AI,意向驱动网络,网络智能。
主要问题:
- 网络技术的快速发展和网络任务的日益复杂化:这要求网络设计、配置和管理的方式需要转变。
- 领域特定的网络语言与自然语言之间的差异:传统的映射方法受限于形式化的翻译,而LLMs需要提供定制化的响应来处理特定的自然语言输入。
- 现有意图驱动网络方法的局限性:包括泛化能力不足、训练成本高昂、难以与现有的技术和工具集成。
主要方法:
- 领域适应的LLMs:通过大量的网络知识微调(finetuning)来实现领域特定的LLMs,并利用检索增强(Retrieval-Augment based)技术来改善从自然语言到网络语言的映射。
- ChatNet框架:提出了一个名为ChatNet的领域适应的网络LLM框架,该框架可以访问各种外部网络工具,以提高效率并减少网络规划任务的负担。
- 使能技术:包括预训练、微调、推理和提示工程(prompt engineering),这些技术有助于构建和优化适合网络应用的LLM模型。
介绍
论文通过提出ChatNet框架和对网络领域的LLM应用进行案例研究&#x